共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates future changes of the Arctic climate by the end of the 21st century, simulated by the regional climate model HIRHAM forced with the ECHAM5/MPI-OM general circulation model and assuming the SRES A1B emission scenario. This assessment provides the regional patterns of future circulation, temperature, and precipitation in the Arctic by the end of the 21st century. The magnitude of winter and summer temperature and precipitation is projected to increase, while their interannual variability is projected to change seasonally and is regionally dependent. The regional-scale response of the temperature and precipitation is associated with changes in storm tracks and atmospheric baroclinicity. During winter, the regions of strongest baroclinicity are shifted northward and strengthened. Changes in the seasonal temperature and precipitation are accompanied by changes in their extremes. Extreme warm and cold events are significantly projected to change, with relative changes of seasonal precipitation being larger than those of precipitation extremes. 相似文献
2.
The anticipated change of climatic conditions within the next decades is thought to have far reaching consequences for agricultural cropping systems. The success of crop production in China, the world's most populous country, will also have effects on the global food supply. More than 30% of the cropping area in China is irrigated producing the major part of the agricultural production. To model the effects of climate change on irrigation requirements for crop production in China a high-resolution (0.25°, monthly time series for temperature, precipitation and potential evapotranspiration) gridded climate data set that specifically allows for the effects of topography on climate was integrated with digital soil data in a GIS. Observed long-term trends of monthly means as well as trends of interannual variations were combined for climate scenarios for the year 2030 with average conditions as well as ‘best case’ and ‘worst case’ scenarios.Regional cropping calendars with allowance for multiple cropping systems and the adaptation of the begin and length of the growing season to climatic variations were incorporated in the FAO water balance model to calculate irrigation amounts to obtain maximum yields for the period 1951–1990 and the climate scenarios.During the period 1951–1990 irrigation demand displayed a considerable variation both in temporal and spatial respects. Future scenarios indicate a varied pattern of generally increasing irrigation demand and an enlargement of the subtropical cropping zone rather than a general northward drift of all zones as predicted by GCM models. The effects of interannual variability appear to have likely more impact on future cropping conditions than the anticipated poleward migration of cropping zones. 相似文献
3.
The occurrence of permafrost in bedrock in northern Fennoscandia and its dependence on past and presently ongoing climatic variations was investigated with one- (1D) and two-dimensional (2D) numerical models by solving the transient heat conduction equation with latent heat effects included. The study area is characterized by discontinuous permafrost occurrences such as palsa mires and local mountain permafrost. The ground temperature changes during the Holocene were constructed using climatic proxy data. This variation was used as a forcing function at the ground surface in the calculations. Several versions of the present ground temperature were applied, resulting in different subsurface freezing–thawing conditions in the past depending on the assumed porosity and geothermal conditions.Our results suggest that in high altitude areas with a cold climate (present mean annual ground temperature between 0°C and −3°C), there may have been considerable variations in permafrost thickness (ranging from 0 to 150 m), as well as periods of no permafrost at all. The higher is the porosity of bedrock filled with ice, the stronger is the retarding effect of permafrost against climatic variations.Two-dimensional models including topographic effects with altitude-dependent ground temperatures and slope orientation and inclination dependent solar radiation were applied to a case of mountain permafrost in Ylläs, western Finnish Lapland, where bedrock permafrost is known to occur in boreholes to a depth of about 60 m. Modelling suggests complicated changes in permafrost thickness with time as well as contrasting situations on southern and northern slopes of the mountain.Extrapolating the climatic warming of the last 200 years to the end of the next century when the anticipated increase in the annual average air temperature is expected to be about 2 K indicates that the permafrost occurrences in bedrock in northern Fennoscandia would be thawing rapidly in low-porosity formations. However, already a porosity of 5% filled with ice would retard the thawing considerably. 相似文献
4.
The effect of climate change on carbon in Canadian peatlands 总被引:3,自引:0,他引:3
Peatlands, which are dominant features of the Canadian landscape, cover approximately 1.136 million km2, or 12% of the land area. Most of the peatlands (97%) occur in the Boreal Wetland Region (64%) and Subarctic Wetland Region (33%). Because of the large area they cover and their high organic carbon content, these peatlands contain approximately 147 Gt soil carbon, which is about 56% of the organic carbon stored in all Canadian soils.A model for estimating peatland sensitivity to climate warming was used to determine both the sensitivity ratings of various peatland areas and the associated organic carbon masses. Calculations show that approximately 60% of the total area of Canadian peatlands and 51% of the organic carbon mass in all Canadian peatlands is expected to be severely to extremely severely affected by climate change.The increase in average annual air temperature of 3–5 °C over land and 5–7 °C over the oceans predicted for northern Canada by the end of this century would result in the degradation of frozen peatlands in the Subarctic and northern Boreal wetland regions and severe drying in the southern Boreal Wetland Region. In addition, flooding of coastal peatlands is expected because of the predicted rise in sea levels. As a result of these changes, a large part of the carbon in the peatlands expected to be severely and extremely severely affected by climate change could be released into the atmosphere as carbon dioxide (CO2) and methane (CH4), which will further increase climate warming. 相似文献
5.
V.E. Romanovsky T.S. Sazonova V.T. Balobaev N.I. Shender D.O. Sergueev 《Global and Planetary Change》2007,56(3-4):399
Air and ground temperatures measured in Eastern Siberia has been compiled and analyzed. The analysis of mean annual air temperatures measured at 52 meteorological stations within and near the East-Siberian transect during the period from 1956 through 1990 demonstrates a significant and statistically significant (at 0.05 level) positive trend ranging from 0.065 to 0.59 °C/10 yr. A statistically significant (at 0.05 level) positive trend was also observed in mean annual ground temperatures for the same period. The permafrost temperature reflects changes in air temperature on a decadal time scale much better than on an interannual time scale. Generally, positive trends in mean annual ground temperatures are slightly smaller in comparison with trends in mean annual air temperatures, except for several sites where the discordance between the air and ground temperatures can be explained by the winter snow dynamics. The average trend for the entire region was 0.26 °C/10 yr for ground temperatures at 1.6 m depth and 0.29 °C/10 yr for the air temperatures. The most significant trends in mean annual air and ground temperatures were in the southern part of the transect, between 55° and 65° N. Numerical modeling of ground temperatures has been performed for Yakutsk and Tiksi for the last 70 yr. Comparing the results of these calculations with a similar time series obtained for Fairbanks and Barrow in Alaska shows that similar variations of ground temperatures took place at the same time periods in Yakutsk and Fairbanks, and in Tiksi and Barrow. The decadal and longer time scale fluctuations in permafrost temperatures were pronounced in both regions. The magnitudes of these fluctuations were on the order of a few degrees centigrade. The fluctuations of mean annual ground temperatures were coordinated in Fairbanks and Yakutsk, and in Barrow and Tiksi. However, the magnitude and timing of these fluctuations were slightly different for each of the sites. 相似文献
6.
To use basin stratigraphy for studying past climate change, it is important to understand the influence of evolving boundary conditions (river discharge and sediment flux, initial bathymetry, sea level, subsidence) and the complex interplay of the redistribution processes (plumes, turbidity currents, debris flows). To provide understanding of this complexity, we have employed source to sink numerical models to evaluate which process dominates the observed variability in a sedimentary record of two coastal Pacific basins, Knight Inlet in British Columbia and the Eel Margin of northern California.During the last glacial period, the Eel River supplied comparatively more sediment with a less variable flux to the ocean, while today the river is dominated by episodic events. Model results show this change in the variability of sediment flux to be as important to the deposit character as is the change in the volume of sediment supply. Due to the complex interaction of flooding events and ocean storm events, the more episodic flood deposits of recent times are less well preserved than the flood deposits associated with an ice-age climate.In Knight Inlet, the evolving boundary conditions (rapidly prograding coastline, secondary transport by gravity flows from sediment failures) are a strong influence on the sedimentary record. The delta and gravity flow deposits punctuate the sedimentary record formed by hemipelagic sedimentation from river plumes. Missing time intervals due to sediment failures can take away the advantage of the otherwise amplified lithologic record of discharge events, given the enclosed nature of the fjord basin. 相似文献
7.
We use three measures of aridity, the Köppen climate classification, the UNEP aridity index and the Budyko dryness index, to estimate the possible effects of late 21st century climate change on the Mediterranean region under increased greenhouse gas concentrations (A2 and B2 IPCC emission scenarios) as simulated with a high resolution (20 km grid interval) regional climate model (the ICTP RegCM). A basic validation of the reference simulation along with a brief discussion of the surface climate changes for the A2 and B2 scenarios is also provided. Analysis of the changes in all three aridity measures indicates that by the end of the 21st century the Mediterranean region might experience a substantial increase in the northward extension of dry and arid lands, particularly in the central and southern portions of the Iberian, Italian, Hellenic and Turkish peninsulas and in areas of southeastern Europe (e.g. Romania and Bulgaria), the Middle East, northern Africa and major Islands (Corsica, Sardinia and Sicily). Most Ice-Cap areas of the Alps are also projected to disappear. These effects are due to a large warming and pronounced decrease in precipitation, especially during the spring and summer seasons. In addition, fine scale topography and coastline features affect the aridity change signal. We identify the southern Mediterranean as a region particularly vulnerable to water stress and desertification processes under climate change conditions. 相似文献
8.
Cryospheric change in China 总被引:16,自引:0,他引:16
Xin Li Guodong Cheng Huijun Jin Ersi Kang Tao Che Rui Jin Lizong Wu Zhuotong Nan Jian Wang Yongping Shen 《Global and Planetary Change》2008,62(3-4):210-218
This paper provides an overview of the current status of the cryosphere in China and its changes. Up-to-date statistics of the cryosphere in China are summarized based on the latest available data. There are 46,377 glaciers in China, covering an area of 59,425 km2. The glacier ice reserve is estimated to be about 5600 km3 and the annual glacier runoff is about 61.6 × 109 m3. The continuous snow cover extent (> 60 days) in China is about 3.4 × 106 km2 and the maximum water equivalent is 95.9 × 109 m3 yr− 1. The permafrost area in China is about 1.72 × 106 km2. The total ground ice reserve on the Qinghai–Tibetan Plateau is estimated to be about 10,923 km3. Recent investigations indicated that glacier areas in China have shrunk about 2–10% over the past 45 yr. Total glacier area has receded by about 5.5%. Snow mass has increased slightly. Permafrost is clearly degrading, as indicated by shrinking areas of permafrost, increasing depth of the active layer, rising of lower limit of permafrost, and thinning of the seasonal frost depth. Some models predict that glacier area shrinkage could be as high as 26.7% in 2050, with glacier runoff increasing until its maximum in about 2030. Although snow mass shows an increasing trend in western China, in eastern China the trend is toward decreasing snow mass, with increasing interannual fluctuations. Permafrost degradation is likely to continue, with one-third to one-half of the permafrost on the Qinghai–Tibetan Plateau anticipated to degrade by 2100. Most of the high-temperature permafrost will disappear by then. The permafrost in northeastern China will retreat further northward. 相似文献
9.
Rainfed tropical agriculture provides important avenue to ascertain the consequences of climate change. This is because reliability of rainfall accounts for much of the variation in agriculture in the region. In addition, the region is already hot and vulnerable from further warming. This study shows from a climate change experiment using Ricardian method in Cameroon that a 7% decrease in precipitation would cause net revenues from crops to fall US$2.86 billion and a 14% decrease in precipitation would cause net revenue from crops to fall US$3.48 billion. Increases in precipitation would have the opposite effect on net revenues. For a 2.5 °C warming, net revenues would fall by US$0.79 billion, and a 5 °C warming would cause net revenues to fall US$1.94 billion. This highlights that agriculture is not only limited by seasonality and magnitude of moisture availability, but also it is significantly impacted by climate change. 相似文献
10.
The response of natural vegetation to climate change is of global concern. In this research, an aggregated Holdridge Life Zone System was used to study the possible response of life zones in China under doubled atmospheric CO2 concentration with the input climatic parameters at 0.5×0.5° resolution of longitude and latitude from NCAR regional climate model 2 (RegCM2) coupled with the CSIRO global climate model. The results indicate that the latitudinal distribution of life zones would become irregular because of the complicated climate change. In particular, new life zones, such as subtropical desert (SD), tropical desert (TDE) and tropical thorn woodland (TTW), would appear. Subtropical evergreen broadleaved forest (SEBF), tropical rainforest and monsoon forest (TRF), SD, TDE and TTW zones would appear in the northeastern China. Cool-temperate mixed coniferous and broadleaved forest (CMC) and warm-temperate deciduous broadleaved forest (WDBF) zones would appear at latitudes 25–35°N. The temperate desert (TD) in the western China would become Tibetan high-cold plateau (THP), SEBF, WDBF and temperate steppe (TS), and a large part of THP would be replaced by TRF, TDE, SEBF, TS and TTW. The relative area (distribution area/total terrestrial area) of CMC, TRF, TDE and TTW zone would increase about 3%, 21%, 3% and 6%, respectively. However, the relative area of SEBF, TS, TD and THP would decrease about 5%, 3%, 19% and 4%, respectively. In all, the relative area of forests (CCF, CMC, WDBF, SEBF, TRF) would increase about 15%, but the relative area of desert (TD, SD, TDE, and TTW) and THP would decrease about 9% and 4%, respectively. Therefore, responses of different life zones in China to climate change would be dramatic, and nationwide corridors should be considered for the conservation of migrating species under climate change. 相似文献
11.
Permafrost and climatic change in China 总被引:8,自引:0,他引:8
The permafrost area in China is about 2.15×106 km2, and is generally characterized by altitudinal permafrost. Permafrost in China can be divided into latitudinal and altitudinal types, the latter can be further divided into plateau and alpine permafrost. Altitudinal permafrost also can be divided into five thermal stability types. The permafrost environment has changed significantly since the Late Pleistocene. In northeastern China, the southern limit of permafrost extended to 41–42°N during the last glaciation maximum; in the Holocene megathermal, it retreated northward. The ice wedges and permafrost formed during the Late Pleistocene are still present in the northern part of the Da-Xing'anling Mountains. The inactive ice wedges at Yitulihe indicate a cooling and subsequent permafrost expansion during the Late Pleistocene. The lower limit of altitudinal permafrost in western China has elevated from 800 to 1500 m since the last glaciation maximum. Compared with that in northern Europe and North America, latitudinal permafrost in northeastern China is less sensitive to climatic warming, but altitudinal permafrost, especially permafrost on the Qinghai–Tibet Plateau (QTP), is sensitive to climatic warming. Since the early 20th century, significant permafrost degradation has occurred and is occurring in most permafrost regions in China. Due to the combined influence of climatic warming and increasing anthropogenic activities, substantial retreat of permafrost is expected on the QTP and in northeastern China during the 21st century. Permafrost degradation has and will cast great influence on engineering construction, water resources and environments in the cold regions of China. The wetlands in the cold regions of China emit significant amounts of CH4 and N2O to the atmosphere and uptake atmospheric CO2 at a considerable rate, which might contribute to the global atmospheric carbon budget and feedback to climatic systems. However, uncertainties about permafrost changes, rates of changes and their environmental impacts are still large and call for intensive studying. 相似文献
12.
A typical question in climate change analysis is whether a certain observed climate characteristic, like a pronounced anomaly or an interdecadal trend, is an indicator of anthropogenic climate change or still in the range of natural variability. Many climatic features are described by one-dimensional index time series, like for instance the global mean temperature or circulation indices. Here, we present a Bayesian classification approach applied to the time series of the northern annular mode (NAM), which is the leading mode of Northern Hemisphere climate variability. After a pronounced negative phase during the 1950s and 1960s, the observed NAM index reveals a distinct positive trend, which is also simulated by various climate model simulations under enhanced greenhouse conditions. The objective of this study is to decide whether the observed temporal evolution of the NAM may be an indicator of global warming. Given a set of prior probabilities for disturbed and undisturbed climate scenarios, the Bayesian decision theorem decides whether the observed NAM trend is classified in a control climate, a greenhouse-gas plus sulphate aerosol climate or a purely greenhouse-gas induced climate as derived from multi-model ensemble simulations.The three climate scenarios are well separated from each other in terms of the 30-year NAM trends. The multi-model ensembles contain a weak but statistically significant climate change signal in the form of an intensification of the NAM. The Bayesian classification suggests that the greenhouse-gas scenario is the most probable explanation for the observed NAM trend since 1960, even if a high prior probability is assigned to the control climate. However, there are still large uncertainties in this classification result because some periods at the end of the 19th century and during the “warm” 1920s are also classified in an anthropogenic climate, although natural forcings are likely responsible for this early NAM intensification. This demonstrates a basic shortcoming of the Bayesian decision theorem when it is based on one-dimensional index time series like the NAM index. 相似文献
13.
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey–Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km2 reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943–1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02–0.03 °C a− 1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation. 相似文献
14.
Impacts of agriculture and urbanization on the climate of the Northeastern United States 总被引:5,自引:0,他引:5
The climate sensitivity to specification of agricultural and urban land cover was investigated using the climate version of the Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) for 1990 over northeastern United States. The simulations were for 5 yr at a spatial resolution of 36 km. Urbanization resulted in near-surface temperature increases of more than 1 K over the urban sites during both winter and summer. The increase in summer temperature due to urbanization was more widespread than that due to the effect of agricultural land use. The conversion of forest to agricultural land resulted in a decrease in temperature of more than 0.5 K during winter and an increase of more than 1 K during summer over the sites of perturbation. The reduced temperature during winter is related to snow cover. Agricultural lands are covered by snow while the trees in non-agricultural areas protrude through the snow, reducing the albedo of the surface. The warming during summer reflects reduced evaporation. Urbanization also reduces the diurnal temperature range (DTR) by about 0.4 K. 相似文献
15.
R.M. Bonnet 《Astrophysics and Space Science》2001,277(1-2):371-378
Space Science helped the start of the open space race after the launch of Sputnik-1 in 1957. Conversely, the use of space vehicles during the cold war allowed the scientists to conduct many observations and make discoveries which have dramatically changed our views of our own Solar System and of the Universe. What will be the future of this activity in the next century, with the disappearance of the cold war justification and in the context of shrinking budgets? Is there a future for space exploration? For what benefit and how will space science programmes be conducted? Who will be the main players? Are there limits to our ability to explore? The pioneers of space research in the post-Sputnik-1 era, like J-L. Steinberg, had both an easier and a more difficult time than space scientists of today. Nevertheless, space science will only survive in the next century if it succeeds in reaching the deep interest and motivation of society at large. 相似文献
16.
Heiko Paeth Anja Scholten Petra Friederichs Andreas Hense 《Global and Planetary Change》2008,60(3-4):265-288
The sensitivity of climate phenomena in the low latitudes to enhanced greenhouse conditions is a scientific issue of high relevance to billions of people in the poorest countries of the globe. So far, most studies dealt with individual model results. In the present analysis, we refer to 79 coupled ocean–atmosphere simulations from 12 different climate models under 6 different IPCC scenarios. The basic question is as to what extent various state-of-the-art climate models agree in predicting changes in the main features of El Niño-Southern Oscillation (ENSO) and the monsoon climates in South Asia and West Africa. The individual model runs are compared with observational data in order to judge whether the spatio-temporal characteristics of ENSO are well reproduced. The model experiments can be grouped into multi-model ensembles. Thus, climate change signals in the classical index time series, in the principal components and in the time series of interannual variability can be evaluated against the background of internal variability and model uncertainty.There are large differences between the individual model predictions until the end of the 21st century, especially in terms of monsoon rainfall and the Southern Oscillation index (SOI). The majority of the models tends to project La Niña-like anomalies in the SOI and an intensification of the summer monsoon precipitation in India and West Africa. However, the response barely exceeds the level of natural variability and the systematic intermodel variations are larger than the impact of different IPCC scenarios. Nonetheless, there is one prominent climate change signal, which stands out from model variations and internal noise: All forced model experiments agree in predicting a substantial warming in the eastern tropical Pacific. This oceanic heating does not necessarily lead to a modification of ENSO towards more frequent El Niño and/or La Niña events. It simply represents a change in the background state of ENSO. Indeed, we did not find convincing multi-model evidence for a modification of the wavelet spectra in terms of ENSO or the monsoons. Some models suggest an intensification of the annual cycle but this signal is fairly model-dependent. Thus, large model uncertainty still exists with respect to the future behaviour of climate in the low latitudes. This has to be taken into account when addressing climate change signals in individual model experiments and ensembles. 相似文献
17.
L. L. Sokolov A. A. Bashakov T. P. Borisova N. A. Petrov N. P. Pitjev V. S. Shaidulin 《Solar System Research》2012,46(4):291-300
The asteroid Apophis is one of the most hazardous near-Earth asteroids. As a result of the scattering of Apophis?? potential trajectories after its close approach in 2029, and its possible approach in 2036, there are many dangerous trajectories including impact trajectories after 2036. The purpose of this study is to identify and investigate these trajectories. We use the Everhart integrator; the DE405, DE423, and EPM2008 ephemerides; and two sets of initial data for Apophis (those collected by NASA in 2006 and by the IAA in 2010). More than 50 possible encounters in this century are presented, including 13 encounters between 2036 and 2050. The minimum geocentric distances obtained using a different ephemeris and initial conditions differ little between themselves. Analogous results in (Yeomans et al., 2009) are consistent with our results. 相似文献
18.
The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach 总被引:1,自引:2,他引:1
This paper measures the economic impact of climate on crops in Kenya. We use cross-sectional data on climate, hydrological, soil and household level data for a sample of 816 households. We estimate a seasonal Ricardian model to assess the impact of climate on net crop revenue per acre. The results show that climate affects crop productivity. There is a non-linear relationship between temperature and revenue on one hand and between precipitation and revenue on the other. Estimated marginal impacts suggest that global warming is harmful for crop productivity. Predictions from global circulation models confirm that global warming will have a substantial impact on net crop revenue in Kenya. The results also show that the temperature component of global warming is much more important than precipitation. Findings call for monitoring of climate change and dissemination of information to farmers to encourage adaptations to climate change. Improved management and conservation of available water resources, water harvesting and recycling of wastewater could generate water for irrigation purposes especially in the arid and semi-arid areas. 相似文献
19.
A numerical model, which simulates the dynamics of alluvial river channels on geological (Quaternary) time scales, is presented. The model includes water flow, channel dimensions, sediment transport and channel planform type. A number of numerical experiments, which investigate the response of an alluvial river to imposed sequences of water and sediment supply, with special emphasis on the time lags between these controlling variables, as well as a downstream discharge increase, are presented. It is found that the influence of the time lags can be substantial, having major implications for the reconstructions of palaeo climate based on river channel behavior documented in the geological record. The model is further applied to both a conceptual warm–cold–warm cycle and a reconstructed evolution of the river Meuse, the Netherlands, during the Late Glacial–Holocene warming. Results show that the model is capable of explaining the response of this river, although better validation against palaeoenvironmental data remains necessary. 相似文献
20.
The northern treeline is generally limited by available warmth. However, in recent years, more and more studies have identified drought stress as an additional limiting factor for tree growth in northern boreal forests and at treelines. Three growth responses to warming have been identified: increase in growth, decrease in growth, and nonsignificant correlation of tree growth with climate. Here we investigate the effect of drought stress on radial growth of white spruce at northern treelines along a longitudinal gradient spanning the entire Brooks Range in Alaska. We systematically sampled 687 white spruce at seven treeline sites. Where possible, we sampled three site types at a given site: high-density forest, low-density forest, and floodplain forest. We investigated the relationship of site and site type to tree growth responses. In the western part of our study area, we found very high numbers of trees responding with increase in growth to recent warming; while in the eastern part, trees responding with decrease in growth to recent warming are predominant. Within a given site, more trees reacting positively to warming grow on site types characterized by low tree density. These patterns coincide with precipitation decreases from west to east and local water availability gradients, therefore pointing to drought stress as the controlling factor for the distribution of trees responding with increase or decrease in growth to recent warming. Compared to 20th century climate, we project a 25–50% basal area (BA) increase in the western region for the 21st century due to climate warming as projected by five general circulation models, 4–11% in the central region and decreases (+1 to −11%) in the eastern region. The overall net change in projected 21st century BA increase at each site seems to be controlled by the relative proportion of responder groups. If these are similar, differences in the magnitude of increase versus decrease in growth control BA projections for that site. This study highlights the importance of regional-scale investigations of biosphere–climate interactions, since our results indicate a substantial gain in aboveground biomass as a result of future warming only in the western regions; while in the eastern regions, climate warming will decrease overall wood production and therefore carbon uptake potential. 相似文献