首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new concept to determine state of the damage in concrete gravity dams is introduced. The Pine Flat concrete gravity dam has been selected for the purpose of the analysis and its structural capacity, assuming no sliding plane and rigid foundation, has been estimated using the two well‐known methods: nonlinear static pushover (SPO) and incremental dynamic analysis (IDA). With the use of these two methods, performance and various limit states of the dam have been determined, and three damage indexes have been proposed on the basis of the comparison of seismic demands and the dam's capacity. It is concluded that the SPO and IDA can be effectively used to develop indexes for seismic performance evaluation and damage assessment of concrete gravity dams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
为了研究混凝土重力坝在地震动荷载作用下的潜在失效模式,以金安桥碾压混凝土重力坝5号非溢流坝段为例,运用粘弹性边界法和流固耦合法建立了反映重力坝在地震动作用下动力响应特征的坝体-地基-库水抗震分析模型。基于增量动力分析(IDA)法:绘制了以相对位移转角为x轴(损伤指标,DM)和峰值地面加速度为y轴(强度指标,IM)的IDA曲线簇;分析了金安桥大坝在极端荷载作用下的潜在失效模式和其在不同峰值地面加速度下重力坝的损伤破坏过程。结果表明:金安桥大坝在地震动荷载作用下,可能发生功能失效的地方多出现在坝体折坡处、碾压分区交界处、坝踵与坝基交界处、廊道顶等应力集中处。因此,加强对这些区域的抗震防护有利于提高大坝整体的抗震水平。  相似文献   

3.
A finite element model of incremental displacement constraint equations (IDCE), based on an existing node‐to‐surface concept, is implemented to deal with dynamic contact surfaces in the seismic behaviour analysis of cracked concrete gravity dams. After verification for sliding, rocking and impact, the IDCE model is applied to study the seismic responses of concrete gravity dams with different profiles and crack locations for a variety of parameters, such as coefficient of friction, water level and type of earthquake, as well as impact damping based on the concept of coefficient of restitution. It is revealed that cracked concrete gravity dams can experience not only sliding and rocking modes, but also the drifting mode in some cases of crack either at the base or at a height. Downstream sliding is normally accompanied by rocking, especially for the cases of crack at a height. Due to rocking and drifting, a cracked dam may still acquire a certain amount of residual sliding even if the effective coefficient of friction is relatively high. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
基于非线性指数型动接触本构模型,对实际键槽模型进行简化处理。采用的本构模型可以考虑缝面的开合非线性以及横缝键槽的咬合作用。采用点-面接触模型模拟横缝的非线性动接触行为,精细研究了缝面开度、径向位移的变化及其对坝体应力状态的影响,并与平缝结果进行了比较。以一座拟建的混凝土重力拱坝,探讨了横缝及其诱导缝对大坝工作性态的影响,并对横缝键槽的影响进行了综合分析。研究表明,横缝的径向滑移量要远大于开度,当考虑诱导缝时,由于大坝整体性受到削弱,横缝开度变大;考虑键槽效应后,径向滑移效应大幅减小,而法向开度增大,坝踵处的主拉应力以及拱冠梁顶处的拱向拉应力的最大值均变大。  相似文献   

5.
In this study, failure probability of the concrete slab on concrete-faced rockfill (CFR) dams with welded and friction contact is investigated under earthquake effects by reliability analysis. For this purpose, Torul CFR dam is selected as an example and numerical solutions are performed by considering combination of reliability analysis–finite element method. 1992 Erzincan earthquake acceleration record is used in the finite element analysis considering deconvolved-base rock input model. In this model, the ground motion to be applied to the foundation base rock is obtained by deconvolution of the free-field surface record. In the materially nonlinear analysis, Drucker–Prager model is used for concrete slab and multi-linear kinematic hardening model is utilized for rockfill. Geometrically nonlinearity is also taken into account. Viscous boundary conditions are defined in the finite element model for both foundation soil and reservoir water. The hydrodynamic pressure of the reservoir water is considered using 2D fluid finite elements based on the Lagrangian approach. Both welded contact and friction contact based on the Coulomb’s friction law are defined in the structural connections. Improved Rackwitz–Fiessler method is used with response surface method in the reliability analysis. The tensile and compression strengths of the concrete slab are utilized in the implicit limit state functions considering various thicknesses. The probability of failure of the most critical points in the concrete slab is obtained. According to this study, the probabilities of failure obtained from the CFR dam including friction contact are lower. When the welded contact is considered in joints, the probability of failure of the concrete slab is 1 due to tensile stress limit state and compression stress limit state only if concrete slab is linear. The most critical probability of failure of the concrete slab appears in the case that the concrete slab is linear and rockfill is materially nonlinear. The probability of failure of the concrete slab decreases if the nonlinearity of the concrete is considered. Also, hydrodynamic pressure decreases the reliability of the concrete slab.  相似文献   

6.
Uncertainties in structural engineering are often arising from the modeling assumptions and errors, or from variability in input loadings. A practical approach for dealing with them is to perform sensitivity and uncertainty analysis in the framework of stochastic and probabilistic methods. These analyses can be statically and dynamically performed through nonlinear static pushover and IDA techniques, respectively. Of the existing structures, concrete gravity dams are infrastructures which may encounter many uncertainties. In this research, probabilistic analysis of the seismic performance of gravity dams is presented. The main characteristics of the nonlinear tensile behavior of mass concrete, along with the intensity of earthquake excitations are considered as random variables in the probabilistic analysis. Using the tallest non‐overflow monolith of the Pine Flat gravity dam as a case study, its response under static and dynamic situations is reliably examined utilizing different combinations of parameters in the material and the seismic loading. The sensitivity analysis reveals the relative importance of each parameter independently. It will be shown that the undamaged modulus of elasticity and tensile strength of mass concrete have more significant roles on the seismic resistance of the dam than the ultimate inelastic tensile strain. In order to propagate the parametric uncertainty to the actual seismic performance of the dam, probabilistic simulation methods such as Monte Carlo simulation with Latin hypercube sampling, and approximate moment estimation techniques will be used. The final results illustrate the possibility of using a mean‐parameter dam model to estimate the mean seismic performance of the dam. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A numerical method, the hybrid frequency-time domain (HFTD) procedure, is used to compute the earthquake response of concrete gravity dams, including sliding along the interface between the dam base and the foundation rock. The solution procedure accounts for the non-linear base sliding behaviour and the frequency-dependent response of the impounded water and flexible foundation rock. A Coulomb friction model represents the force-displacement relationship for sliding at the base interface. Using the solution procedure, an analysis of a typical dam (122 m high) shows that base sliding will occur during a moderate earthquake but the sliding displacement will be a tolerable amount when dam-foundation rock interaction is considered.  相似文献   

8.
A direct finite element method is presented for nonlinear earthquake analysis of interacting dam–water–foundation rock systems. The analysis procedure applies viscous damper absorbing boundaries to truncate the semi‐unbounded fluid and foundation‐rock domains and specifies at these boundaries effective earthquake forces determined from the design ground motion defined at a control point on the free surface. The analysis procedure is validated numerically by computing the frequency response functions and transient response of an idealized dam–water–foundation rock system and comparing with results from the substructure method. Because the analysis procedure is applicable to nonlinear systems, it allows for modeling of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at concrete–rock interfaces. Implementation of the procedure is facilitated by commercial finite element software with nonlinear material models that permit modeling of viscous damper boundaries and specification of effective earthquake forces at these boundaries. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Incremental Dynamic Analysis (IDA) involves a series of nonlinear response history analyses with a suite of incrementally scaled ground motion records. Although IDA is perhaps the most comprehensive seismic performance assessment method, it receives criticism because several ground motion records are scaled up until the structure collapses. The scaling practice often results to unrealistic multipliers, thus modifying the amplitude of the ground motion and introducing bias on the structural performance estimation. Record scaling is a common practice in earthquake engineering due to the lack of natural records corresponding to large magnitudes and/or small distances from the fault rupture location. In this work we use a large number of ground motion records to compare the predictions of IDA with that of unscaled ground motions and we propose a new methodology in order to quantify the bias introduced in IDA. Apart from natural records, we have conducted broadband ground motion simulations for rupture scenarios of weak, medium and large magnitude events in order to expand our record database. The investigation is performed on a series of inelastic single-degree-of-freedom systems and on two multistory steel moment frame buildings. The results pinpoint both qualitatively and quantitatively, for the full range of limit-states, the bias that IDA introduces on the structural performance estimation.  相似文献   

10.
对于有缝重力坝的分析,基于连续介质力学的界面单元-有限元方法难于比较精确地模拟缝间的接触应力,从而无法合理地估算坝体应力与变形。作者对于多体系统和分区连续介质所发展的非连续变形计算力学模型能够根据接触界面的本构特性及其力学和运动学约束条件精确地再现受力过程中界面相互作用力的传递与非连续变形状态,本文将其应用于有缝重力坝的动力分析。实例数值分析表明该模型的计算结果从定性上讲是合理的,并且为判断坝体缝隙的工作状态与界面应力提供了有力的依据。  相似文献   

11.
The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to inaccurate prediction of the structural responses under certain circumstances. Stepped structures or continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are expected. In this paper, a logically simple and numerically efficient procedure is proposed to solve the dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the sliding and non‐sliding modes of the isolated structure are unified into a single equation that is represented as a difference equation in a discrete‐time state‐space form and the base shear forces between the sliding interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure can be obtained recursively from the discrete‐time version of the motion equation with constant integration time step even during the transitions between the non‐sliding and sliding phases. Therefore, both accuracy and efficiency in the dynamic analysis of the highly non‐linear system can be enhanced to a large extent. Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for both a stepped structure and a continuous bridge. Effectiveness of friction pendulum bearings for earthquake protection of such structures has been verified. Moreover, evident unsynchronized sliding motions of the friction bearings have been observed, confirming the necessity to deal with each of the bearings independently in the analytical model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
针对非规则人字形桥梁在地震作用下灾变严重的问题,以一座非规则人字形桥梁为研究对象,建立其空间分析模型,研究综合考虑支座摩擦滑移、结构碰撞对非规则人字形桥梁地震响应的影响。结果表明:邻梁间的碰撞作用可使得桥梁墩顶位移及内力相比不考虑时有所减小,但同时也使梁体产生了较大的加速度脉冲效应;当考虑支座摩擦滑移和结构碰撞时,固定墩墩顶位移和邻梁相对位移峰值有一定程度增大,然而对梁体加速度脉冲效应结果影响并无统一规律;纵向地震波作用下,非规则人字形桥梁不仅存在顺桥向的碰撞,横桥向的碰撞响应也不容忽视。非规则人字形桥梁进行抗震设计计算时应选取符合实际情况的计算模型,考虑支座摩擦滑移及结构间的碰撞。  相似文献   

13.
基于IDA法与Pushover法的混凝土核心筒抗震性能对比分析   总被引:1,自引:0,他引:1  
侯炜 《地震学刊》2014,(2):242-247
足够数量地震输入的增量动力分析方法(IDA方法)是目前最为真实和先进的模拟结构抗震性能手段,而静力推覆分析方法(Pushover Analysis方法)操作简单,更为实用,可以较好揭示结构从弹性到屈服直至倒塌过程中构件的工作状态。采用2种方法对钢筋混凝土核心筒算例进行评估,并作对比分析。结果表明,采用IDA方法得到的4个性能水平与Pushover方法得到的指标限值有一定误差,但均在一定范围之内,采用IDA方法得到顶点位移角限值偏大;采用单一侧力模式的Pushover方法无法完全体现高阶振型及地震动等因素的影响,造成Pushover方法分析结果与结构实际弹塑性地震响应有一定差异。  相似文献   

14.
A nonlinear, slip-joint element for analyzing the effect of discontinuities on a concrete, arch dam's seismic response is developed. The joint element has been incorporated into a finite-element-based, solution for predicting dynamic structural response. This joint model, plus the numerical procedure incorporated into the incremental solution, models inter-element impact across a joint when adjacent, structural elements separate and later collide. Collision is incorporated into the incremental analysis by calculating the exchange of momentum and energy with the equations describing eccentric, rigid-body impact. Joint material's force-deflection relations are multi-linear with hysteresis. Coulomb friction is also modeled. The joint element and numerical procedure have been tested with two models. The first is a segmented arch of seven, straight beam elements connected to one another. The arch dam has been experimentally tested. Analytical results are compared with experimental results from the sealed model. Second is a rectangular plate model subject to lateral base accelerations. One horizontal edge is fixed and the opposite edge is free. The vertical edges may be fixed or connected to the base by joint elements.  相似文献   

15.
利用钢筋混凝土柱的试验结果,验证OpenSees程序用于钢筋混凝土结构非线性分析的可行性。以此为基础,对钢筋混凝土框架结构在远场地震、近场非脉冲地震与近场脉冲地震作用的性能进行非线性时程分析,研究框架结构在三类地震作用下的反应以及二阶效应对结构反应的影响。针对近场脉冲地震对结构进行增量动力分析(IDA)和易损性分析,分别得到结构的IDA曲线、易损性曲线和近场脉冲地震作用下二阶效应对结构抗震性能的影响。分析结果表明,在三类地震作用下,近场脉冲地震导致的二阶效应对结构抗震性能的影响最为显著,结构抗震设计中宜考虑二阶效应的影响。  相似文献   

16.
17.
A novel low-cost friction sliding system for bidirectional excitation is developed to improve the seismic performance of reinforced concrete (RC) bridge piers. The sliding system is a spherical prototype developed by combining a central flat surface with an inclined spherical segment, characterized by stable oscillation and a large reduction in response accelerations on the flat surface. The inclined part provides a restoring force that limits the residual displacements of the system. Conventional steel and concrete are employed to construct a flat-inclined spherical surface atop an RC pier. The seismic forces are dissipated through the frictions generated during the sliding movements; hence, the seismic resilience of bridges can be ensured with a low-cost design solution. The proposed system is fabricated utilizing a mold created by a three-dimensional printer, which facilitates the use of conventional concrete to construct spherical shapes. The concrete surface is lubricated with a resin material to prevent abrasion from multiple input ground motions. To demonstrate the effectiveness of the system, bidirectional shaking table tests are conducted in the longitudinal and transverse directions of a scaled bridge model. The effect of the inclination angle and the flat surface size is investigated. The results demonstrate a large decrease in response acceleration when the system exhibits circular sliding displacement. Furthermore, the inclination angle that generates the smallest residual displacement is identified experimentally.  相似文献   

18.
为研究方钢管混凝土框架-钢板剪力墙(SPSW)核心筒结构在不同强度地震下破坏概率,使用拉杆模型作为钢板剪力墙等效模型,与已有试验对比验证各参数有效性。以地震动峰值加速度(PGA)作为地震动强度参数,按照场地条件等要求选择11条地震动记录。以结构最大层间位移角作为损伤指标,对一典型方钢管混凝土框架-钢板剪力墙核心筒结构进行增量动力分析(IDA),得到IDA曲线簇。基于增量动力分析进行易损性分析,得到易损性曲线,并计算结构的抗倒塌储备系数。结果表明:8度多遇地震作用下,此结构处于正常使用状态。8度设防地震作用下,处于修复后可使用状态。8度罕遇地震作用下,处于生命安全状态。表明该结构具有良好的抗震性能,满足规范中“小震不坏”、“中震可修”和“大震不倒”的抗震设防目标。该结构抗倒塌储备系数大于规范建议值,具有较好的抗倒塌能力。  相似文献   

19.
耐震时程法(ETA)仅需少量的非线性时程分析,便可以掌握结构倒塌破坏的全过程。但是,此方法目前较少应用于结构倒塌失效分析。本文探讨了耐震时程曲线的特性及拟合思路,以钢筋混凝土框架为研究对象,应用ETA方法分析了钢筋混凝土框架的地震响应及损伤发展。研究结果:(1)混凝土框架结构的地震响应分析结果表明:采用ETA方法分析时结构顶点位移和层间位移角与采用IDA方法分析时接近,而最大基底剪力会略大;但是,两种方法的结果相关系数均接近于1。(2)强震下的结构倒塌分析结果表明:ETA方法能较为准确的预测结构的塑性铰分布、塑性铰出现概率及塑性铰发展顺序。当采用多条耐震时程加速度曲线作为输入时,评估结果准确性更高。由于ETA方法仅需进行少量几条耐震时程分析且计算高效,因此ETA方法可以成为预测结构失效模式的高效方法。  相似文献   

20.
汤溪水库始建于1959年,当时未对地震设防。为响应“国际减灾十年”号召,有关部门要求对该水库大坝的抗震能力进行复核。 在研究区的地震地质、地震活动性以及深部地球物理场等资料的基础上,划分出四个潜在震源区,并用概率地震危险性分析方法,给出复核大坝抗震能力的两个等级的地震动:取地震复发周期475年(相当于地震基本烈度)的峰加速度142.2cm/s~2,复发周期2474年(相当于“罕遇烈度”)的峰加速度229.6cm/s~2。 在上述地震动下,利用三种方法对大坝抗震能力进行复核:1.水工建筑物抗震设计规范SDJ10—78的拟静力法;2.有限元整体永久变形分析法;3.有限滑动永久变形分析法。根据上述三种方法的复核结果,主坝可以抗御地震基本烈度的作用;在罕遇烈度下,几种方法的结果稍有不同;拟静力法的最小安全系数K=1.08,稍小规范规定的1.1;整体永久变形算出的最大水平永久变形10.8cm,估计坝顶和坝坡会出现规模不大条数不多的纵、横向裂缝,因此是可以接受的,有限滑动分析的几种类似的方法给出的结果差别较大,尤其是Romo法,得出水平和垂直最大永久变形分别为66cm和21cm。综合来看,在罕遇烈度下,主坝的抗震能力处于临界状态。副坝抗震能力高,在罕遇烈度下也是令人放心的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号