首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Propagation of torsional Alfvén waves in the magnetosphere is examined for two models of the Earth's magnetic field, one where the field is toroidal, the other being a dipole field. Both models yield magnetically guided torsional wave modes which are strongly localized in all directions transverse to the steady magnetic field. The transverse structure is determined by a self-consistent solution of the ideal MHD equations. It is shown that the torsional wave is guided even when b is finite, where b is the component of the wave magnetic field in a direction parallel to the steady magnetic field.  相似文献   

2.
Using the proper motion and parallax data for 1011 O-B stars in the Hipparcos Catalogue we have derived the Oort constants, A = 17.60 ± 0.21 (km/s)/kpc, B = −14.62 ± 0.20 (km/s)/kpc, and a solar velocity V = 16.7 ± 0.10 km/s in the direction l = 45.3° ± 2.8°, b = 21.0° ± 2.3°. For a galactocentric distance of the sun of R0 = 8.5 kpc, we then get a galactic rotational velocity of the solar neighbourhood of Vlsr = 273.9 km/s, obviously much higher than the IAU published value of 220 km/s. We have investigated the cause for this difference.  相似文献   

3.
On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂Vθ∂θ)/R = −2.60 ± 1.07 km s−1 kpc−1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S = 18.78 ± 0.86 km/s in the direction l = 54.4° ± 2.9° and b = +26.6° ± 2.6°.  相似文献   

4.
We have compared solutions obtained from the bi-Maxwellian based 16-moment transport equations with those obtained from the Maxwellian based 13-moment transport equations for conditions leading to the steady state, subsonic flow of a fully-ionized electron-proton plasma along geomagnetic field lines in the vicinity of the plasmapause. The bi-Maxwellian based equations can account for large temperature anisotropies and the flow of both parallel and perpendicular thermal energy, while the Maxwellian based equations account for small temperature anisotropies and only the total heat flow. Our comparison indicates that for Stable Auroral Red arc (SAR-arc) conditions leading to strong field-aligned heat flows (temperatures of 8000 K and temperature gradients of4K. km−1 at 1500 km), the bi-Maxwellian based equations predict a different thermal structure in the topside ionosphere than the less rigorous Maxwellian based equations. In particular, the bi-Maxwellian based equations predict proton and electron temperature anisotropies with T > T, while the Maxwellian based equations predict the opposite behavior for the same boundary conditions. This difference is related to the way in which the temperature anisotropies and heat flows are treated in the two formulations. For the bi-Maxwellian based equations, the inclusion of separate heat flows for parallel and perpendicular thermal energy allows for the development of a pronounced tail in both the electron and proton distribution functions, which leads to temperature anisotropies with T > T. For the Maxwellian based equations, on the other hand, the tail development is restricted because only the total heat flow is considered. Consequently, as the heat flows down, the presence of an increasing magnetic field acts to produce an anisotropy with T > T, and this process dominates tail formation for the Maxwellian based equations.  相似文献   

5.
The H velocity field at 0516 UT during the eruption of the X1.5/3B flare in the active region E58 N11 (Boulder 3106) on 1981 May 13, obtained with the horizontal solar spectrograph of Yunnan Observatory is given in this paper. A comparative analysis of the velocity field with the magnetic field shows that the velocity field is related to the gradient and neutral line of the magnetic field and the brightness of the flare maximum changes in the velocity field of ±15 km/s occurs at the location of greatest magnetic field gradient.

The neutral line of the magnetic field (h = 0) basically matches the zero velocity line (v = 0) between the two bright ribbons. But they do not match between the two bright knots where the filament is twisted and ascends. The spectral lines show the sloping morphology, from which we deduced the dynamical parameters of the twist of the rising filament.  相似文献   


6.
Using a complete non-local convection theory, we carried out the theoretical calculations of 7Li depletion of the solar convective envelope models with different convective parameters c1 and c2, and got a model of the solar convection zone consistent with the observed 7Li abundance and the depth of the solar convection zone determined by helioseismic techniques. The overshooting distance of effective non-local convective mixing of 7Li is very extensive, which is about 1.07HP or 0.09R. However, the super-radiative temperature zone is much narrower, and it is only 0.20HP or 0.016R.  相似文献   

7.
A quantitative theoretical analysis of electric field and current distributions in the ionosphere is given assuming certain time variable convection field profiles at an altitude of 1250 km. A number of idealized assumptions regarding the ionospheric characteristics are defined and discussed. A qualitative discussion of a quasi-stationary configuration with an approximately curl free electric field is also given. Geomagnetically field aligned current densities i of the order 10−5−10−4A/m2 are consistent with quite reasonable assumptions about the convection field E. Oscillations in E with periods of the order of 10 sec should readily be generated when σ is large. In the quasi-stationary case there may be a mechanism that strengthens and concentrates i locally under certain conditions. It is found that a number of recent high altitude observations of convection field reversals may be consistent with large potential drops along the magnetic field lines. The solutions obtained as well as some of the basic assumptions are compared with observations.  相似文献   

8.
Lapenta  Giovanni  Knoll  D.A. 《Solar physics》2003,214(1):107-129
We consider the stability of current sheets where a normal component of the field is present. It is well known that reconnection in such systems progresses orders of magnitude too slow to explain observations, even when full kinetic models are used. We consider here a new possible mechanism for fast reconnection in such systems. We consider the effect of the possible presence of velocity shear that can drive the Kelvin–Helmholtz instability (KHI). The effect of the KHI is shown to convert shear flow into compression flow that drives reconnection. Three scaling effects can be discerned in the simulations. First, the reconnection rate is directly controlled by the driving mechanism which is provided by the KHI. The result of this new mechanism is that fast reconnection can be achieved even in absence of anomalous resistivity. Second, the effect of varying the initial sheared flow along the main magnetic field direction enhances the reconnection process. Finally, the reconnection rate is insensitive to the value of resistivity.  相似文献   

9.
On September 14–18, 2000, a medium-small solar active region was observed at Ganyu Station of Purple Mountain Observatory. Its spots were not large, but it had a peculiar active filament. On Sep.16, a flare of importance IIIb with rather intense geophysical effects was produced. Our computation of the magnetic structure of the active region reveals that the rope-shaped filament was concerned with a low magnetic arc close to magnetic neutral line. An intense shear of magnetic field occurred near magnetic rope. The QSL analysis shows that a 3-D magnetic reconnection might appear in the vicinity of filament, and this can be used to interpret the formation of a large flare.  相似文献   

10.
Observations, from the Apollo 16 Spacecraft, in lunar orbit, of the total radiance of the K + F corona, from 3 R to 55 R are presented and discussed.

The logarithmic slope of the K + F coronal radiance, in the region r > 20 R, is found to be n = 1.93, slightly less steep than previous determinations. The photometric axis of the radiance is found to be displaced 3 ± 1° north of the ecliptic, for the region r > 20 R, and this displacement is interpreted as an annual variation due to non-coincidence of the ecliptic and the symmetry axis of the zodiacal cloud.  相似文献   


11.
We have found that the introduction of strange quark phase transition in the simulation of the evolution of supernovae results in a stronger shock wave. This is probably due to an increased convective instability in the core. For our range of calculation we found that a first-order strange phase transition can induce explosion in a WW(88) model with a 1.28 M iron core (the upper bound for prompt explosion was about 1.1 M). Our result supports DAI Zi-gao et al.'s thesis that strange quark phase transition can raise the probability of supernova explosion.  相似文献   

12.
Reconnection is the most efficient way to release the energy accumulated in the tense astrophysical magnetoplasmas. As such it is a basic paradigm of energy conversion in the universe. Astrophysical reconnection is supposed to heat plasmas to high temperatures, it drives fast flows, winds and jets, it accelerates particles and leads to structure formation. Reconnection can take place only after a local breakdown of the plasma ideality, enabling a change of the magnetic connection between plasma elements. After Giovanelli first suggested magnetoplasma discharges in 1946, reconnection has usually been identified with vanishing magnetic field regions. However, for the last ten years a discussion has been going on about the structure of 3 D reconnection, e.g., whether in 3 D it is possible also without magnetic nulls or not. We first shortly review the relevant magnetostatic and kinematic fluid theory results to argue than that a kinetic approach is necessary to reveal the generic three-dimensional structure and dynamics of reconnection in collisionless astrophysical plasmas. We present results about the 3 D structure of kinetic reconnection in initially antiparallel magnetic fields. They were obtained by selfconsistently considering ion and electron inertia as well as dissipative wave-particle resonances. In this approach reconnection is a natural consequence of the instability of thin current sheets. We present the results of a nonlocal linear dispersion theory and describe the nonlinear evolution of the instability using numerical particle code simulations. The decay of thin current sheets directly leads to a configurational instability and three-dimensional dynamic reconnection. We report the resulting generic magnetic field structure. It contains pairs of magnetic nulls, connected by separating magnetic flux surfaces through which the plasma flows and along which reconnection induces large parallel electric fields. Our results are illustrated by virtual reality views and movies, both stored on the attached CD-ROM and also being available from the Internet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A theoretical model is proposed for interpreting the coherent emissionmechanism of solar radio moving type IV bursts. Energetic electrons produced in flares captured by an expanding and rising magnetic flux tube exhibit a beam-like distribution of velocities on the top of the flux tube. These excite beaming plasma instability and directly amplifies O-mode electromagnetic waves. The instability growth rate sensitively depends on the coronal plasma parameter, ƒpece and the beam-temperature Tb. This can qualitatively explain the high brightness temperature and high degree of polarization as well as the broad spectrum observed in this type of solar radio bursts.  相似文献   

14.
Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection. Both observations and numerical modeling, however, suggest that reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of magnetic flux onto a rising ejection by reconnection involving the ejection’s background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying the forces acting upon the ejection, generically increasing its upward acceleration. The modified forces, in turn, can more strongly drive the reconnection. This feedback process acts, effectively, as an instability, which we refer to as a reconnective instability. Our analysis implies that CME models that neglect the effects of reconnection cannot accurately describe observed CME dynamics. Our ultimate aim is to understand changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux. This flux can be estimated from observations of flare ribbons and photospheric magnetic fields.  相似文献   

15.
Several laboratory experiments on magnetic field line reconnection are briefly reviewed. Emphasis is placed on the double inverse pinch device (DIPD) in which magnetic flux is built up during a quiescent reconnection phase and then abruptly transferred during an impulsive reconnection phase. Scaling estimates show that this impulsive phase corresponds to a solar release of 1030 ergs in 102 seconds with the production of GeV potentials. The trigger for the impulsive flare is a conduction mode instability (ion-acoustic) which abruptly changes the resistance of the neutral point region when the reconnection current density reaches a critical value.Some results are presented from another reconnection device which has exactly antiparallel fields at the boundaries. This flat plate device develops one x-type neutral point rather than tearing into many neutral points. The reconnection rate is more quiescent than in the DIPD. A mild conduction mode instability occurs. The results suggest that regions with flattened boundary fields may not be as conducive to flares as regions with more curved fields.  相似文献   

16.
A general theory of rotational discontinuities is developed and the changes in the components of the plasma pressure, p| and p, and in the magnetic induction, B, are found. For a given value of λ=(p|p) 4πμ/B2 upstream only a limited range of downstream anisotropies are possible. If λ>0.6 upstream then isotropy is not possible downstream. Some special solutions are analysed and the identification of rotational discontinuities is the solar wind is discussed.  相似文献   

17.
Wang  S.  Liu  Y. F.  Zheng  H. N. 《Solar physics》1997,173(2):409-426
Satellite observations of the heliospheric current sheet indicate that the internal structure of sector boundaries is a very complex structure with many directional discontinuities in the magnetic field. This implies that the heliospheric current sheet is not a single surface but a constantly changing layer with a varying number of current sheets. In this paper, we investigate magnetic reconnection caused by the resistive tearing mode instability in non-periodic multiple current sheets by using two-dimensional magnetohydrodynamic simulation. The results show that it is complex unsteady magnetic reconnection. Accompanying the nonlinear development of the tearing mode, the width of each magnetic island in multiple current sheets increases with time, and this leads to new magnetic reconnection. At the same time, the width of each current sheet increases, and the current intensity decreases gradually. Finally, the reverse current disappears, and a big magnetic island is formed in the central region. This process is faster when the separation between the current sheets is smaller. We suggest that the occurrence of multiple directional discontinuities observed at sector boundary crossings in the heliosphere may be associated with the magnetic islands and plasmoids caused by magnetic reconnection in multiple current sheets.  相似文献   

18.
本文研究了磁流体力学与高频等离子体波( 包括纵横模式) 之间的精巧的相互作用。研究表明,这些等离激元会在电流片内诱发一种阻抗不稳定,并最终导至磁重联,出现爆发性不稳定。在高涨的离声湍动情况下,高温电流片模型必须采用反常电导率,而非库仑电导率。理论估算的结果与观测相一致。因此这种计及等离激元有质动力作用的新磁重联理论,基本上能解释耀斑现象。  相似文献   

19.
Magnetic reconnection is thought to be a key process in most solar eruptions. Thanks to highresolution observations and simulations, the studied scale of the reconnection process has become smaller and smaller. Spectroscopic observations show that the reconnection site can be very small, which always exhibits a bright core and two extended wings with fast speeds, i.e., transition-region explosive events.In this paper, using the PLUTO code, we perform a 2-D magnetohydrodynamic simulation to investigate small-scale reconnection in double current sheets. Based on our simulation results, such as the line-of-sight velocity, number density and plasma temperature, we can synthesize the line profile of SiIV 1402.77? which is a well known emission line used to study transition-region explosive events on the Sun. The synthetic line profile of Si IV 1402.77? is complex with a bright core and two broad wings which can extend to nearly 200 km s-1. Our simulation results suggest that the transition-region explosive events on the Sun are produced by plasmoid instability during small-scale magnetic reconnection.  相似文献   

20.
Two-dimensional (2D) compressible magnetohydrodynamic simulations are performed to explore the idea that the asymmetric reconnection between newly emerging intranetwork magnetic field flux and pre-existing network flux causes the explosive events in the solar atmosphere. The dependence of the reconnection rate as a function of time on the density and temperature of the emerging flux are investigated. For a Lundquist number of L u= 5000 we find that the tearing mode instability can lead to the formation and growth of small magnetic islands. Depending on the temperature and density ratio of the emerging plasma, the magnetic island can be lifted upward and convected out of the top boundary, or is suppressed downward and convected out of the top boundary, or is suppressed downward nad submerged below the bottom boundary. The motions of the magnetic islands with different direction are accompanied respectively with upward or downward high velocity flow which might be associated with the red- and blue-shifted components detected in the explosive events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号