首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Permian volcanic sediments at Bluff have been strained and thermally metamorphosed by Permian intrusives to metasediments of hornblende—hornfels facies. Quartz, which crystallised as a secondary mineral during metamorphism, has an unusual preferred orientation with c-axes either forming paired maxima in the plane containing the lineation (=maximum principal strain axis = direction of extension) and the perpendicular to schistosity (=minimum principal strain axis = shortening direction) or a broad maximum parallel to the lineation; the paired maxima are approximately 30° either side of the lineation. Some quartz grains are markedly elongate parallel to the lineation, and according to hypotheses of preferred orientation involving crystal plasticity, there should be some correlation between the shape of such grains and their c-axis orientations. Grain-size and shape analysis of Bluff quartz demonstrate that no such correlation exists; the analyses show that the preferred orientation results from oriented nucleation in the residual stress field immediately following the bulk straining of the rocks, with the distribution of c-axes as predicted by Kamb's hypothesis (1959). The time relationships of rock deformation, thermal metamorphism, and nucleation and growth of quartz are discussed.  相似文献   

2.
The lattice preferred orientation (LPO) of an anorthosite (composed of andesine) sampled from a highly deformed anorthositic mylonite (Grenville Province, Quebec) was measured by TOF neutron diffraction and SEM-EBSD. The quantitative texture analysis of neutron data was accomplished by using the Rietveld texture analysis with the WIMV algorithm, implemented in the program package Materials Analysis Using Diffraction (MAUD). The texture calculations of the EBSD data were performed by using the program BEARTEX. Analyses from neutron and electron diffraction data gave similar results if EBSD data are smoothed to account for grain statistics. The principal pole figures show (010) roughly parallel to the rock foliation, (001) poles exhibiting a low angle (25°) to the pole to foliation, and (100) poles close to the Y-direction (perpendicular to the lineation and foliation pole). The [100] crystallographic direction shows a maximum in the lineation direction, [010] directions concentrate near the foliation pole. The geological deformation conditions and the constructed pole figure patterns indicate that the preferred orientation could be attributed to intracrystalline slip dominantly on (010) with [100] as slip direction. Elastic properties, calculated by averaging, document weak anisotropy that has implications for the seismic structure of the lower crust.  相似文献   

3.
The Pikikiruna Schist of Nelson, New Zealand, displays a fabric in which the patterns of quartz c-axes, the poles to planes of inequidimensional quartz grains, and the statistical maxima of poles to sheet-silicate cleavages are oblique to each other. The quartz c-axes patterns consist of type-1 and type-2 crossed-girdles. The triclinic fabric can be explained in terms of one complex rotational deformation of an essentially plane strain nature. Rotation of approximately 90° about the intermediate strain-axis was combined at a late stage with subsidiary rotations about the extension axis. The quartz c-axes patterns can be related to the kinematic framework rather than the finite strain-axes. On the other hand, the dimensional quartz preferred orientation may be closely related to the finite strain-axes, though the quantity of strain can not be measured because of recrystallisation.  相似文献   

4.
SummaryFinite Element Study of the Nevis Bluff (New Zealand) Rock Slope Failure In June 1975, part of the Nevis Bluff rock slope failed along State Highway 6 in the South Island of New Zealand. The slope is near the bottom of the Kawarau River valley, which has been deeply entrenched in chlorite schist rocks. The detailed geology of the slope, and the mechanical properties of the rocks comprising the slope are described. For the purposes of finite element modelling, the schist was assumed to be a transversely isotropic material with four independent deformability parameters. A two dimensional finite element program was used to establish the regional state of stress, the results from which were then used in a larger scale model of the rock slope. The results of finite element analyses suggested that slope failure occurred by flexural toppling, where continuous columns broke in flexure as they slid along schistosity surfaces. Flexural cracking was then responsible for propagating the plane along which sliding occurred. When the shear strength available along this plane was exceeded by shear stresses, the slope failed.
ZusammenfassungUntersuchung des Bruches eines Felshanges des Nevis Bluff (Neuseeland) mit Hilfe der Methode der Finiten Elemente Im Juni 1975 brach ein Teil des Felshanges von Nevis Bluff entlang der Autobahn 6 auf der Südinsel von Neuseeland. Die Rutschung ereignete sich nahe des Talbodens des Flusses Kawarau, welcher sehr tief in Chloritschiefer eingeschnitten ist. Die detaillierte Geologie dieser Rutschung und die mechanischen Eigenschaften der dabei wirksamen Felspartien werden beschrieben. Im Hinblick auf eine Untersuchung des Rutschvorganges mit Hilfe der Methode der Finiten Elemente wurde das schiefrige Medium als transversal isotropes Medium mit vier voneinander unabhängigen Verformungsparametern angenommen. Für die Ermittlung des primären Spannungszustandes wurde ein zweidimensionales Finite-Elemente-Programm benützt. Die Ergebnisse dieser Untersuchung wurden dann in einem erweiterten Rechenmodell für die Hangrutschung verwendet. Die Ergebnisse der Untersuchung zeigten, daß die Rutschung auf einen Mechanismus ähnlich dem Hakenwerfen zurückzuführen sein dürfte, wobei bei diesem Vorgang durchgehende Platten durch Biegung zum Bruch kamen, als sie auf den Schieferungsflächen abglitten. Biegerisse waren die Ursache für die Ausbildung einer durchgehenden Gleitfläche. Sobald die Scherfestigkeit in dieser Gleitfläche überschritten wurde, kam der Hang zu Bruch.

RésuméÉtude de la rupture de pente rocheuse de Nevis Bluff par la méthode d'éléments finis En juin 1975, une partie de la paroi rocheuse de Nevis Bluff, le long de la route nationale 6 en Nouvelle Zélande s'est éffondrée. La pente est près du fond de la vallée de la rivière Kawarau qui s'est profondément encaissée dans des schistes chloritiques. La géologie détaillée de la paroi et les propriétés mécaniques des roches constitutives sont décrites. Pour la modélisation par éléments finis, le schiste a été supposé se comporter comme un matériau orthotrope avec quatre paramètres de déformation. L'utilisation d'un programme d'éléments finis bidimensionnels a permis d'établir l'état de contrainte régional qui fut transféré à un modèle de la paroi rocheuse de plus grande échelle. Les résultats de l'analyse par éléments finis suggèrent que la rupture a en lieu par fauchage des couches dans lequel des colonnes continues se fissurent en flexion à mesure qu'elles glissent le long de surfaces de schistosité vers l'ouverture. Les fissures de flexion se sont approfondies jusqu'à former un plan sur lequel le glissement a eu lieu. Quand la résistance au cisaillement le long de ce plan a été dépassée par les contraintes de cisaillement, la paroi s'est éffondrée.


With 16 Figures  相似文献   

5.
Progressive deformation of the Palaeoproterozoic Hutchison Group metasediments, eastern Eyre Peninsula, South Australia, accompanied the development of a ~200 km‐long suture, the Kalinjala Shear Zone. High‐strain structures that developed during the Kimban Orogeny preserved in this supracrustal sequence at Sleaford Bay, southern Eyre Peninsula are: (i) KF1 sheath folds; and (ii) KD2 tight folds and reverse shears. Basement Archaean Sleaford Complex gneisses are interpreted to have been thrust over their cover rocks. Interleaving of individual Hutchison Group units by imbricate shears and folds are suggested to have caused an estimated strike‐normal shortening of up to 50%. However, this calculation is of less significance than the >15:1 strike‐parallel elongation of the package during KD1. Identical structural elements reported by earlier workers are also preserved in the stratigraphic type areas of the Hutchison Group, central Eyre Peninsula. Importantly, the stratigraphic Upper and Lower Middleback Jaspilites, in the Middleback Range, are reinterpreted as one unit structurally repeated by a kilometre‐scale KF1 sheath fold. Imbricate KD2 shear zones are inferred to have inverted original disconformities throughout the package. In light of these observations, we suggest that the currently constructed stratigraphic succession of the Hutchison Group should be regionally re‐examined, with a special focus in those areas less affected by the imbricate structures.  相似文献   

6.
Summary Low grade metasediments from the Zarouchla Group of the Phyllite-Quartzite series in northern Peloponnesus have been investigated. Mineralogically, there is a clear distinction between the lowermost and the overlying formations. Rocks of the former contain characteristic minerals such as chloritoid or garnet whereas the other formations contain the assemblage muscovite + chlorite + qz ± paragonite ± paragonite/muscovite. Illite crystallinity values are low to middle anchizone in the uppermost formation and increase progressively through upper anchizone values in the intermediate formations, reaching low epizone values in the lowermost formation. Pumpellyite-actinolite facies metabasic rocks are sandwiched between metaclastites with upper anchizone or anchizone-epizone illite crystallinity values; and chloritoid bearing quartzites with low epizone illite crystallinity values. Although geothermometric data obtained from metasediments of the lowermost formation do not support a simple burial-related pattern of metamorphism, illite crystallinity data point to a progressive increase in metamorphic grade with stratigraphic depth.
Chemische Mineralogie und Illitkristallinität in niedriggradigen Metasedimenten, Zarouchla, Gruppe, nördlicher Peleponnes, Griechenland
Zusammenfassung In Metasedimenten niedrigen Metamorphosegrades aus der Zarouchla Gruppe der Phyllit-Quarzit-Serien im nördlichen Peleponnes bestehen klare mineralogische Unterschiede zwischen der tiefsten und den darüber-liegenden Formationen. Gesteine der ersteren enthalten als charakteristische Minerale Chloritoid oder Granat, während die darüberliegenden Formationen weithin durch die Paragenese Muskovit + Chlorit + Quarz + Paragonit + Paragonit/Muskovit gekennzeichnet werden. Die Werte der Illit-Kristallinität entsprechen in der obersten Formation der unteren bis mittleren Anchizone und nehmen graduell zu: Werte der oberen Anchizone wurden in den dazwischenliegenden Formationen registriert um schließlich Werte der unteren Epizone zu erreichen. Metabasite in Pumpellyit-Aktinolith-Fazies treten zwischen Metaklastiten mit Illit-Kristallinitätwerten der oberen Anchizone oder des Bereiches Anchizone-Epizone und chloritoid-führenden Quarziten mit Illit-Kristallinität der niedrigen Epizone auf. Obwohl geothermometrische Daten, die von Metasedimenten der untersten Formation gewonnen wurden nicht ein einfaches Schema der Überlagerungs-Metamorphose unterstützen, weist die Illit-Kristallinität doch auf eine progressive Zunahme des metamorphen Grades mit stratigraphischer Tiefe hin.


With 6 Figures  相似文献   

7.
Cementation of bryozoan-echinoid-benthic foraminiferal temperate shelf carbonates of the Oligocene Te Kuiti Group, North Island, New Zealand, occurred mainly during subsurface burial. The calcite cements in the limestones are dominated by equant and syntaxial rim spar which typically becomes ferroan (given an iron supply) and, compared to the skeletal material with normal marine δ18O values from +2 to −1‰, more depleted in 18O with depth of burial, the δ18O composition of bulk cement samples ranging from −1 to −7‰. These trends reflect the establishment in pore waters during sediment burial of reducing conditions and gradually increasing temperatures (20–50°C), respectively. The δ13C values (0 to +3‰) of the cements remain the same as the host marine shells, suggesting the source of carbon in the cements was simply redistributed marine carbonate derived from shell dissolution.

Two gradational burial diagenetic environments influenced by marine-derived porewaters are arbitrarily distinguished: shallow burial phase and moderate burial phase. During the shallow burial phase, down to 500–600 m sub-bottom depth, the carbonates lost at least 25% of their original porosity by mechanical compaction and were selectively cemented by non-ferroan or usually ferroan, variably luminescent, slightly 18O-depleted sparry calcite cement (δ18O −2 to −4‰), mainly as syntaxial rims about echinoid grains. These shallow-burial cements form less than about 10% of total cement in the majority of the limestones and their source was probably mainly mild intergranular dissolution of calcitic skeletal fragments accompanying the onset of chemical compaction. During the moderate burial phase, between about 600 and 1100 m sub-bottom depth, porosity loss continued (typically to about 70% of its original value) as a result of pressure-solution of calcitic bioclasts associated with more advanced stages of chemical compaction. This involved development of a wide variety of non-sutured and microstylolitic solution seams, including both single and composite, wispy or continuous, bedding-parallel types and non-parallel reticulate forms. The released carbonate was precipitated as ferroan (or non-ferroan where iron supply was negligible), dull luminescent, strongly 18O-depleted (δ18O −4 to −7‰), mainly equant calcite spar cement, occluding available pore space in the limestones.  相似文献   


8.
A new phase equilibria geobarometer determines magmatic storage and crystallization conditions, including pressure, temperature, oxygen fugacity (\({f_{{{\text{o}}_2}}}\)), and the presence of a fluid phase for glass-bearing rocks containing the assemblage plagioclase?+?pyroxene(s). This newly developed geobarometer can better constrain crystallization conditions of shallow (<?500 MPa; <~?20 km), glass-bearing andesites to dacites. The geobarometer utilizes rhyolite-MELTS to determine crystallization conditions in natural pumice and scoria samples. The validity of the geobarometer is tested by comparing it to results from experiments. Uncertainties are assessed using Monte Carlo simulations. We apply the geobarometer to the plag?+?opx?+?cpx-bearing system of Mt. Ruapehu, in the southern Taupo Volcanic Zone, New Zealand. The samples from Mt. Ruapehu are tested from ~?5 to ~?400 MPa and from super-liquidus to 90% crystalline (~ 1200 to ~ 700 °C). Mt. Ruapehu serves as a methodological testing ground for the geobarometer, and results from our geobarometer agree with recent Mt. Ruapehu studies. Results show a distribution of crystallization pressures ranging from 50 to 150 MPa (~?2.0 to 5.9 km) for different eruptions, with modes of 110 MPa (~ 4.3 km) and 130 MPa (~ 5.1 km). These are consistent with field interpretations of different eruptive styles based on juvenile clast textures and previous knowledge of the magma plumbing system. Mt. Ruapehu magmas are fluid saturated, with \({f_{{{\text{o}}_2}}}\) of ΔQFM ~ + 1 (NNO).  相似文献   

9.
The Michigamme Formation of the Marquette District in Michigan's Upper Peninsula comprises a sequence of cleaved rocks of increasing metamorphic grade. Because metamorphism in the area occurred after cleavage formation, the rocks provide an opportunity to study preferred orientation development of phyllosilicates under conditions of static recrystallization.X-ray texture goniometry on samples from the greenschist-facies zone that were collected at varying distances from the bounding biotite-in and garnet-in isograds, shows that: (1) the preferred orientation of phyllosilicates is always parallel to the mesoscopic cleavage, and (2) the degree of preferred orientation of phyllosilicates improves as a function of increasing metamorphic grade (from <4 to >9 m.r.d.). Scanning electron microscopy on these samples shows that: (1) the length/width ratio increases with increasing grade, and (2) grain shapes are better defined with increasing grade.Previous work on slates showed mechanical processes dominate at very low-grade metamorphism, whereas chemical processes are favored at higher grades. The Michigamme samples show that improvement of preferred orientation occurrred by grain dissolution and crystallization. Noncleavage-parallel phyllosilicate grains were preferentially dissolved, probably facilitated by internal strain energy from mineral defects, aided by chemical energy, whereas cleavage-parallel phyllosilicates were hosts for new growth along their basal planes. These results show that significant fabric strengthening can be achieved by grain dissolution and crystallization in the absence of tectonic stress.  相似文献   

10.
The southeastern fringe of the Precambrian Aravalli fold belt has been designated as Jahazpur Belt, which includes two greenschist facies metasedimentary lithopackages, Hindoli (Late Archean/Paleoproterozoic) and Jahazpur (Paleoproterozoic) Groups. We present geochemical data on metapelite (phyllite) and metagreywackes from the Hindoli Group. Metapelites are enriched in alumina while metagreywackes show a wide range and higher abundance of silica. Covariance between TiO2 — Al2O3, K2O — Al2O3 pairs and moderate to high SiO2/MgO ratios indicate a strong weathering control. Chemical Index of Alteration (CIA = 68 for metagraywackes; 75 for metapelites) reveals moderately weathered protoliths for them. Fractionated LREE pattern with almost flat HREE trend and moderate to high Eu anomalies (Eu/Eu* = 0.66 to 0.8) indicate feldspar bearing granite — granodiorite as probable compositions in the provenance. Very high PIA values (93) for metapelites reflect almost complete feldspar dissolution while the corresponding values for metagraywackes (68) are relatively lower. The diagnostic immobile trace elements (Sc, Zr, Th) can be interpreted as a variable felsic source (mainly granitic and subordinate granodioritic) for metagreywackes and a granodioritic (more mafic) one for metapelites. Considering the broad Precambrian geological set-up of NW India, the Banded Gneiss Complex (BGC), which predominantly comprises TTG gneisses and granites, amphibolite, etc. seems to be the most likely provenance for Hindoli sediments.  相似文献   

11.
The abrupt transition from coastal and shallow shelf sediments to bathyal sediments provides a record of rapid subsidence and deepening of the early Miocene Waitemata basin. Basal shallow marine strata (Kawau Subgroup) accumulated upon a highly dissected surface that overlies deformed Mesozoic metagreywacke. The early Miocene coast was characterized by an embayed and cliffed shoreline with numerous sea stacks and islands. Kawau Subgroup lithofacies, which include pocket beach, shallow shelf and base-of-cliff talus deposits, reflect rapidly changing coastline configuration and water depths as the rugged bedrock surface was buried. The response to continued rapid subsidence and transgression in Waitemata basin was a decrease in the supply of coarse clastic sediment. Beach gravels were locally displaced to greater water depths by avalanching down steep bedrock slopes. The first bathyal turbidite facies, which abruptly overlie the shallow-water Kawau Subgroup, include locally derived sediment gravity flows commonly ponded by remnant bedrock submarine highs. When this local supply of sediment had been exhausted, coarse sediment starvation ensued and bathyal muds accumulated. With the resumption of sediment supply and gradual burial of submarine bedrock relief, submarine fans coalesced and increased in lateral extent. Subsidence of the Waitemata basin to bathyal depths is thought to have occurred in less than a million years. From the above hypothesis, a general model of sedimentation is proposed.  相似文献   

12.
The Late Cretaceous to Early Eocene, dominantly micritic, Amuri Limestone Group (ALG) was deposited in an approximately NW trending trough, in eastern Marlborough, New Zealand. The ALG comprises: the Mead Hill Formation; the Teredo, Lower and Middle Limestone formations; and the Upper and Lower Marl formations. Chert and dolomite are concentrated in the Mead Hill Formation, which contains five of six recognized diagenetic zones: Zone I at the base of the ALG consists almost entirely of chert; Zone II consists solely of chert and dolomite; Zone III comprises chert and limestone; Zone IV is composed of chert plus dolomite; Zone V is a chertified mudstone; and the minor amounts of chert found in the Middle Limestone Formation comprise Zone VI. With the exception of Zones IV and V, chert decreases stratigraphically upwards and away from the basin centre. All the dolomites are composed of <1 mm diameter rhombohedra in discontinuous beds and lenses. Generally Ca-rich, and non- to slightly ferroan, the dolomite contains approximately 500–900 ppm Mn and 200–400 ppm Sr. δ13C values average 1–2%PDB with δ18O ratios of about -4%PDB. Mass balance calculations indicate that the Mg2+ for dolomitization was derived from sea water. Sr, Fe and Mn concentrations are interpreted as indicating dolomite formation in the marine environment, with no influence from meteoric waters. The intimate association with pyrite implies dolomite formation in association with sulphate reduction, in the upper sediment column. δ18O data show that the bulk of the dolomite formed at temperatures below 50°C. All chert samples contain in excess of 90 wt% SiO2, about 1 wt% Al2O3 and 1 wt% from losses on ignition. Generally all other major elements total less than 2 wt% oxide. δ18O values range from 26·8 to 29·0%SMOW. Chert chemistry is consistent with the replacement of host carbonate and expulsion of carbonate-bound components from the site of chertification, and the effective dilution by SiO2 of non-carbonate-bound insoluble residues. δ18O data indicate that chert formed in fluids of similar composition and temperature as the dolomite. The abundance of disseminated pyrite in cherts implies an association with sulphate reduction. Silica for chertification is thought to have initially come from dissolution of siliceous organisms. However, there is insufficient biogenic silica available to form the volumes of chert observed. It is suggested that the bulk of the silica came from SiO2-rich pore waters generated by clay mineral reactions in the thick underlying mudstones. The ALG compacted down through these pore waters. Chert and dolomite nucleation are considered to have been penecontemporaneous. Dolomitization was initially probably the faster process, continuing as long as sulphate reduction prevailed and there was an adequate supply of Mg2+. The nucleation of chert, although initially slower (probably due to a relatively lower initial SiO2 supply), continued after cessation of dolomitization to the extent of completely chertifying the dolomite intercrystalline matrix. The amount of chertification decreased progressively as SiO2 supplies diminished, both stratigraphically upwards and away from the basin centre.  相似文献   

13.
新西兰taranaki盆地中的Pakawau组和Kapuni组属于晚白垩世-始新世。它们为-套含煤层的陆相-海陆交互相层系,该层系中生物扰动和虫孔十分发育,研究表明生物构造的发育程度和虫孔大小是判别古水体底部沉积物中氧溶量的有效标志。  相似文献   

14.
The Himalia Ridge Formation (Fossil Bluff Group), AlexanderIsland is a 2·2-km-thick sequence of Upper Jurassic–LowerCretaceous conglomerates, sandstones and mudstones, derivedfrom an andesitic volcanic arc and deposited in a fore-arc basin.The metamorphic and thermal history of the formation has beendetermined using authigenic mineral assemblages and vitrinitereflectance measurements. Metamorphic effects include compaction,pore-space reduction, cementation and dissolution and replacementof detrital grains by clay minerals (smectite, illite/smectite,corrensite and kaolinite), calcite, chlorite, laumontite, prehnite,pumpellyite, albite and mica, with less common quartz, haematite,pyrite and epidote. The authigenic mineral assemblages exhibita depth-dependence, and laumontite and calcite exhibit a strongantipathetic relationship. Detrital organic matter in the argillaceouslayers has vitrinite reflectance values (Ro) ranging from 2·3to 3·7%. This indicates considerable thermal maturation,with a systematic increase in reflectivity with increasing depth.There is good correlation of metamorphic mineral assemblageswith chlorite crystallinity and vitrinite reflectance values—allindicating temperatures in the range of 140 ± 20°Cat the top of the sequence to 250 ± 10°C at the baseof the sequence. The temperatures suggest a geothermal gradientof 36–64°C/km and a most likely gradient of 50°C/km.It is suggested that this higher-than-average gradient for afore-arc basin resulted either from rifting during basin formationor from a late-stage arc migration event. KEY WORDS: Antarctica; diagenesis; fore-arc basin; low-temperature metamorphism; vitrinite reflectance  相似文献   

15.
Microstructures in slate belt rocks at the Elura Mine, near Cobar, south-eastern Australia, indicate that volume loss by syntectonic dissolution is coupled with mass accretion by reprecipitation of the dissolved material in dilational sites. The mass accretion is sustained primarily by repetitive tensile microfracturing at high pore-fluid pressures. Oriented growth in the inter- and intragranular microcracks is locally host-controlled, creating lattice- and shape-preferred orientations. The grain-scale crack-seal features throughout the rock reflect rhythmic fluid pressure fluctuations; a balance is achieved between the fracture-induced permeability (and consequent flushing rates), and the rate of fluid build-up in a relatively sealed environment.
Instability in the balancing factors can lead to localization and intensification of tensile failure (and hence, tension vein formation) in the grain aggregate. Growth of veins by crack-seal also reflects a steady state, but with more localized fluctuations of fluid flow on the aggregate scale. Still larger imbalances between flushing and fluid accumulation (i.e. pressure variations) induce breccia veining. The larger pressure gradients over greater distances, associated with dilation localization (from pervasive microfracturing to spaced breccia domains), allow fluid channelling with an increased potential for chemical fluid/rock disequilibrium. Therefore, large breccia vein systems tend to be sites of extensive fluid/rock interaction and replacement, as spectacularly illustrated by the syntectonic sulphide orebodies at Elura. The huge amounts of silicate, carbonate and sulphide accumulated during folding at Elura illustrate the large scale of source and sink couples possible in solute mass transfer.  相似文献   

16.
During our study we obtained the first age datings of detrital zircons from metasandstones of the Ladoga Group (North Ladoga Region, Russia) with the U-Pb isotopic method using the SHRIMP-II ion microprobe. The data obtained made it possible to clarify the lower age limit of sedimentation and to obtain additional age data for evaluating the chemical composition and an age of source areas. This work presents the results of isotopic-geochemical (Sm-Nd) and geochemical studies of metasediments. High LREE concentrations, a high La/Sc ratio and a low Cr/h ratio, and the presence of a distinct Eu-minimum (Eu/Eu* = 0.54–0.72) indicate a significant role of acidic terrigenous material in source areas. In addition, the data of the isotope analysis of detrital zircons show that sediments of the Ladoga Group accumulated from the destruction of Proterozoic rocks (1.9–2.0 Ga; a proportion in sediments is 60–70%) and, to a lesser extent, Archean rocks (2.54–2.74 and 2.9–3.01 Ga; the proportion in sediments is 30–40%). One of the Archean source areas could be granite-gneisses of the Pitkyaranta-Koirinoya dome structure with the U-Pb zircon age of 2659 ± 15 Ma. We have established the lower age limit of sedimentation as 1.9 Ga within the measurement error. The Sm-Nd model ages obtained (2.5–2.6 Ga for sediments of the Ladoga Group and over 3.4 Ga for granite-gneisses of the dome structure) suggest a significant contribution of ancient crustal source area into source rocks. Our age data agree well with those for svecofennides of Finland.  相似文献   

17.
Barrier dunes on the northern side of the Tawharanui Peninsula, north of Auckland, New Zealand, appear to have been overtopped by extreme waves that have deposited two large sand washover lobes in a back beach wetland. Present-day storm surges and storm waves are incapable of overtopping the barrier dunes. However, historical data and numerical models indicate tsunamis are amplified by resonance within the adjacent bay and Hauraki Gulf. Further, the location of nearshore reefs in close proximity to the washover lobes suggests that the interaction between tsunamis and the reefs further amplified the waves at those locations. The presence of a distinctive pumice (Loisels Pumice) within the washover deposits suggests that the deposits are associated with a 15th Century eruption from the submarine Mt Healy caldera located northeast of New Zealand.  相似文献   

18.
A generalised crustal structure of Fiordland is proposed.Detailed mapping in part of Western Fiordland has led to the recognition of a basement granulite facies lower crustal material, probably Precambrian in age) separated by a regional thrust zone from a cover sequence (amphibolite facies gneisses, of Lower Paleozoic age). With the recognition of the basement—cover relationship and the aid of aeromagnetic anomalies Fiordland has been divided into four, generally north-northeast trending, regions. The Western Fiordland region is composed chiefly of basement rocks. The Central Fiordland and Southwestern Fiordland regions are made up predominantly of amphibolite and greenschist-facies metasediments and gneissic granodiorites of the cover sequence, which in Central Fiordland have a regional dip to the east, off the basement. The Eastern Fiordland region is characterised by a series of basic, intermediate and acid intrusive rocks. The more prominent magnetic anomalies in Eastern Fiordland, Southwestern Fiordland, and a large anomaly off the coast of Western Fiordland, are all considered to be caused by intrusive bodies. The presence of a positive gravity anomaly over Western Fiordland, coupled with a gravity low offshore, is consistent with the lower crust being uplifted and exposed in this area. Continuing shallow and intermediate-depth seismic activity beneath Fiordland, as well as the large size of the gravity anomaly, suggest that tectonic forces are currently acting to maintain Western Fiordland at its unusually high level.Fiordland thus displays a cross-section of continental crust: Precambrian(?) metaigneous granulites in the lower crust; Lower Paleozoic metasedimentary amphibolitefacies gneisses and melted equivalents in the middle crust; Mesozoic intrusives, and overlying Cretaceous and Tertiary sediments in the upper crust.  相似文献   

19.
COOPER  A. F. 《Journal of Petrology》1972,13(3):457-492
Progressive mineralogical changes are described for metabasicrocks through a Barrovian-type metamorphic series ranging fromgreenschist to amphibolite facies in the Southern Alps of NewZealand. Wet chemical and electronmicroprobe analyses of coexisting phasesillustrate (a) that chlorite composition becomes progressivelymore Mg-rich towards higher grades. Chlorite and biotite zonechlorites have Mg/Fe <1.00, while in the oligoclase zonethe chlorite Mg/Fe >2.00. (b) Biotite and epidote compositionsshow no systematic variation with metamorphic grade and arecontrolled by bulk rock composition. For epidote, compositionis directly related to oxidation states during metamorphism.(c) Zoning profiles from atoll and normal porphyroblastic almandine-richgarnets are illustrated, and their relationship to compositionalchanges with metamorphic grade discussed, (d) Coexisting compositionsof albite and oligoclase through the garnet zone outline theform of the peristerite solvus. Myrmekitic textures in oligoclaseare ascribed to release of silica during progressive eliminationof albite. Element distribution between coexisting minerals is graphicallyinvestigated. Isogradic samples show very similar element distributions,suggesting general equilibration. Distribution of any elementbetween two phases for the facies series as a whole, however,is clearly influenced by changing concentrations of other ionsin one or both minerals. In particular for pairs containingcalciferous amphibole, the distribution coefficient is dependentupon tetrahedrally co-ordinated Al+3 of the amphibole.  相似文献   

20.
A section across the Haast Schist Group in the Southern Alps of New Zealand shows a sequence of metamorphosed eugeosynclinal sediments. Meta-basic rocks (greenschists) have been studied to determine the nature of the actinolite-hornblende transition and to investigate the change in amphibole composition through the Metamorphic Facies Series.Electron microprobe analyses of 21 representative amphiboles, including 3 amphibole pairs can be shown to support theories of a miscibility break in the calciferous amphibole solid solution series. The existence of a miscibility break is further supported by the widespread appearance, even at low metamorphic grades, of exsolution lamellae in actinolite and hornblende amphiboles.Amphibolite facies amphiboles differ from greenschist facies amphiboles in that (a) there are increased amounts of Ti entering the lattice and (b) that there is an increased occupancy of the A site at higher metamorphic grades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号