首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fedorov  Yu.  Stehlik  M.  Kudela  K.  Kassovicova  J. 《Solar physics》2002,208(2):325-334
A theory of the transport of an anisotropic pulse of charged particles injected into the interplanetary magnetic field is applied to an anisotropic ground level event on 24 May 1990. For this event the kinetic regime is considered when the mean free path is comparable with the distance from particle source. Both the source angular particle distribution and the angular dependence of a detector response are included. The theoretically predicted temporal profiles are compared with the particle intensity records measured by several neutron monitors with different asymptotic directions.  相似文献   

2.
Results are presented for a series of experiments investigating effects which can influence the interpretation of data from ionisation-based dust detectors carried on spacecraft. First, the variation of the impact ionisation yield with angle of impact was studied for impacts of iron microparticles onto gold at speeds of 1-. The angle of incidence was from 0° (normal incidence) to 80° (glancing incidence). Little or no variation was observed at angles up to 60°, but at 80° the total impact ionisation signal was around an order of magnitude lower than at smaller angles. In addition, the fast rising component of the ionisation signal rise time showed no variation with impact angle, but the total signal rise time showed a steady decrease. The effect of secondary impact ionisation resulting from particle impacts on detector side walls was also studied. Iron microparticles were fired on to an aluminium target at various angles, and the impact ionisation signal on a nearby gold target was measured. It was found that ionisation signals were observed on the gold target, and that these were very similar in appearance to those observed in direct impacts.The effect of reduction in particle charge on an impact ionisation signal was investigated. Iron microparticles were fired on to a gold target after passing through a thin film which reduced the charge which was used to accelerate them. It was found that there was a measurable drop in ionisation signal in the reduced-charge case. The empirical relation IIONISATION=1.67×10−9QPARTICLE0.35 (units of C) was found. This implies there is a component in the observed ionisation signal that is not related to the impact. To test this, charged tungsten carbide particles were dropped at very low velocity onto a replica of a dust detector used in space whilst placed in a vacuum chamber. Ionisation signals were frequently recorded by the detector. It was concluded that this signal originated from the incident particle charge.In the final section of work, as an example, the influence of oblique incidence, side-wall impacts and particle charge effects on data collected by the Gorid dust detector in Earth orbit were investigated. Corrections were applied to the mass and velocity distributions derived from Gorid data. In extremis, oblique incidence effects were found to shift the mass distribution down by an order of magnitude, and the velocity distribution up by a factor of two to three. If all the data had come from unrecognised side-wall impacts, the mass distribution would be shifted downwards to lower masses by three orders of magnitude, and the velocity distribution upwards by a factor of five. Possible particle charge effects were found to shift the mass distribution down by 30%, and did not alter the velocity distribution.Overall we have investigated a variety of impact-related phenomena and conclude that these can affect the interpretation of data from instruments deployed in space.  相似文献   

3.
The exact analytic expression for the density of energetic charged particles, which were injected by an instantaneous point source at a particular pitch angle into the interplanetary medium, has been derived. We start from the Boltzmann kinetic equation with the collision integral describing the isotropic particle scattering by "massive" magnetic clouds. The solution has been obtained without any expansion parameters in the 3-dimensional vector form, then it was projected into the cylindrical coordinate system. The space-time particle distribution is disscussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The occurrence of superluminal motion in extragalactic radio sources is believed to be quite common. Among others, the geometrical scattering of radio radiation can also cause superluminal expansion and or motion and halo formation, In this paper, the effectiveness of the stimulated Raman scattering in producing these features is investigated. The scattering medium is a plasma whose position, density and temperature decide the rate and angle of scattering. When the radiation from a stationary and constant source gets scattered from a stationary plasma, a halo is formed around the source. However, the scattering of a rotating radiation beam does produce superluminal motion of the virtual source. It is found that the plasma should have the characteristics of the emission-line regions and the intercloud medium in order to Raman scatter the radiation. Since the scattering is polarization dependent, it is possible to estimate the rotation of the electric vector along the direction of the apparent motion of a radio source.  相似文献   

5.
The particle escape probability from a non-multiplying slab containing an internal source is defined in terms of a functional relation for the scattering function for the diffuse reflection problem. The Padé approximation technique is used to obtain numerical results for particle escape probability for inhomogeneous medium. Numerical results for homogenous and inhomogeneous media are given.  相似文献   

6.
《Astroparticle Physics》2001,14(4):245-260
Measurements of electron, muon and hadron lateral distributions of extensive air showers as recorded in the Karlsruhe shower core and array detector experiment are presented. The data cover the energy range from 5×1014 eV up to almost 1017 eV and extend from the inner core region to distances of 200 m. The electron and muon distributions are corrected for mutual contaminations by taking into account the detector properties in the experiment. All distributions are well described by NKG functions. The scale radii describing the electron and hadron data best are 30 and 10 m, respectively. We discuss the correlation between the scale radii and the ‘age' parameter as well as their dependence on shower size, zenith angle, and particle energy threshold.  相似文献   

7.
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.  相似文献   

8.
This paper presents an overview of a number of the principal findings regarding the hot plasmas (E 50 keV) in Jupiter's magnetosphere by the HISCALE instrument during the encounter of the Ulysses spacecraft with the planet in February 1992. The hot plasma ion fluxes measured by HI-SCALE in the dayside magnetosphere are similar to those measured in the same energy range in this region by the Voyager spacecraft in 1979. Within the dayside plasma sheet, the hot-ion energy densities are comparable with, or larger than, the magnetic field energy densities; these hot ions are found to corotate at about one-half the planetary corotational speed. For ions of energies 500 keV/nucleon, the protons contributed from 50–60% to as much as 80% of the energy content of these plasmas. Strong, magnetic-field-aligned streaming was found for both the ions and electrons in the high-latitude duskside magnetosphere. The ion and electron pitch-angle distributions could be characterized by cos25 α throughout many of the high anisotropy intervals of the outbound pass. There is some evidence in the ion pitch-angle distributions for a corotational component in the hot plasmas at high Jovian latitudes. While there are limitations owing to the finite geometries of the detector telescope systems on the determination of the angular spreads of the ion and electron beams, the measurements show that there are intervals when the particle distributions are not bidirectional. At such times, locally the hot plasmas could be carrying currents of 10−4μAm−2. The temporal variations in the streaming electron fluxes are substantially larger than the variations measured for the fluxes that are more locally mirroring. The temporal variations contain periodicities that may correspond to hydromagnetic wave frequencies in the magnetosphere as well as to larger scale motions of magnetospheric plasmas. On nearly half of the days for about a 130 day interval around the time of the Ulysses encounter with the planet, particles of Jovian origin were measured in the interplanetary medium. An event discussed herein shows evidence of an energy dependence of the particle release process from the planetary magnetosphere into the interplanetary medium.  相似文献   

9.
The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray emitters, can be grouped in different subclasses depending on the nature of the binary components or the origin of the particle acceleration: the interaction of the winds of either a pulsar and a massive star or two massive stars; accretion onto a compact object and jet formation; and interaction of a relativistic outflow with the external medium. We evaluate the potentialities of an instrument like the Cherenkov telescope array (CTA) to study the non-thermal physics of gamma-ray binaries, which requires the observation of high-energy phenomena at different time and spatial scales. We analyze the capability of CTA, under different configurations, to probe the spectral, temporal and spatial behavior of gamma-ray binaries in the context of the known or expected physics of these sources. CTA will be able to probe with high spectral, temporal and spatial resolution the physical processes behind the gamma-ray emission in binaries, significantly increasing as well the number of known sources. This will allow the derivation of information on the particle acceleration and emission sites qualitatively better than what is currently available.  相似文献   

10.
Thomas E. Thorpe 《Icarus》1979,37(2):389-398
Low phase angle observations in the Chryse-Acidalia region have been obtained the Viking Orbiter 1 spacecraft under clearer atmospheric conditions than reported earlier. A variety of surface features were recorded, e.g., crater streaks, dark and bright patches. Several findings for this scene include: an abrupt brightness increase (10%) was found at phase angles less than 3°, an effect dependent on surface albedo and possibly particle distribution; a slight weakening of reflectance surge with decreasing wavelengths; a larger opposition effect for features of high albedo was recorded; and a greater reddening with increase phase angle took place for low albedo regions. Both reflectance and contrast values are provided at three wavelengths as a function of phase angle from 0.15 to 20°.  相似文献   

11.
The HEOS detector measures the mass and speed of micrometeoroids in the Earth-Moon system. They are detected by the plasma produced by particle impacts on the sensor. During 2 yr of data collection 384 particles have been registered. As shown earlier (COSPAR 1973), they can be divided into 3 categories according to their temporal distribution: particles that are (1) randomly distributed or (2) appear in “groups” or (3) appear in “swarms” In this paper the origin of the groups and swarms is discussed. For this purpose the article orbits with respect to the Earth and the Moon were traced back. The results imply a lunar origin of the groups, whereas the swarms are correlated with the vicinity of the Earth. In addition, the dependence of the cumulative flux upon the detector's viewing direction indicates clearly an anisotropic particle flux.  相似文献   

12.
The neutral particle detector (NPD) on board Mars Express has observed energetic neutral atoms (ENAs) from a broad region on the dayside of the martian upper atmosphere. We show one such example for which the observation was conducted at an altitude of 570 km, just above the induced magnetosphere boundary (IMB). The time of flight spectra of these ENAs show that they had energies of 0.2-2 keV/amu, with an average energy of ∼1.1 keV/amu. Both the spatial distribution and the energy of these ENAs are consistent with the backscattered ENAs, produced by an ENA albedo process. This is the first observation of backscattered ENAs from the martian upper atmosphere. The origin of these ENAs is considered to be the solar wind ENAs that are scattered back by collision processes in the martian upper atmosphere. The particle flux and energy flux of the backscattered ENAs are and , respectively.  相似文献   

13.
We demonstrate that a decrease of the keV particle fluxes in the dayside magnetosphere near the geosynchronous orbit is characteristic of the first several hours of magnetospheric disturbances. After some hours newly injected plasma from the nightside reaches the ‘evacuated’ regions of the dayside magnetosphere and strong flux increases are observed. The high altitude observational results reported here agree well with earlier results of measurements near the ionosphere. The ‘evacuation’ of the dayside magnetosphere is interpreted in terms of a change in the convection pattern associated with an increase of the large scale electric field at the onset of the disturbance. The model presented is capable of accommodating all characteristics of the observational data, such as the temporal and spatial distributions, energy and pitch angle characteristics, and differences between electrons and protons.  相似文献   

14.
For conventional radiation detectors fabricated from compound semi-conductors, the wide disparity between the transport properties of the electron and holes, means that detector performances are limited by the carrier with the poorest mobility-lifetime product (μτ). Finite drift lengths introduce an energy dependent depth term into the charge collection process, which effectively limit maximum detection volume to tens of mm3 – entirely unsuitable for the detection of gamma-rays. The recent introduction of the coplanar-grid charge-sensing techniques has overcome this problem by essentially discarding the carrier with the poorest transport properties, thus permitting high spectral resolution and high detection efficiency. For example, energy resolutions of 2% full-width half-maximum at 662 keV have been demonstrated with coplanar-grid CdZnTe detectors of volumes up to 2 cm3. Further improvements in detector performance and yield are being pursued through refinements in electrode design and material quality. Because coplanar-grid CdZnTe detectors can operate at room temperature, they are ideally suited for applications requiring portability, small size, or low power consumption such as planetary space missions. Other potential applications include well logging, medical diagnostics, and gamma-ray astronomy. We discuss the feasibility and design of a solid state gamma-ray detector based on CdZnTe and compare its performance to a large volume Ge detector. As will be shown, a significant improvement can be made if T1Br is used as the detection medium.  相似文献   

15.
Nature of the photometric phase curves of the regolith like surfaces (like those of the asteroids) are believed to be dependent on the single particle characteristics like particle size, shape, composition etc. and physical characteristics of the surface like porosity and roughness. Most of the phase curves have a rapid surge of intensity at small phase angles (typically below 5°) known as opposition effect, followed by a linear less decreasing trend at larger phase angles. Average intensity of the linear region has been found to be mostly dependent on the average particle size and its composition, in many laboratory observations. Generally, it is difficult to explain the nature of light scattering by an ensemble of irregular shaped inhomogeneous particles with a theoretical model, just by studying the phase curves. In the present work, we have investigated whether the theoretically expected variation of the scattered light intensity (at a given phase angle) with the average particle size of the grains constituting regoliths, for a given material of the particle is in agreement with the experimental results or not? If yes, this can be a simpler but efficient way to study light scattering by regolith like surfaces. For theoretical analysis, Hapke formula has been used with Mie theory for single particle phase function, where we have neglected the influence of porosity and roughness presently. The data are also fitted with an empirical formula. It has been found that this empirical formula may also be used to estimate the unknown average particle size of a real regolith with known composition.  相似文献   

16.
17.
The detection of low-degree solar oscillation modes with a specific low-resolution detector configuration is investigated. The detector is part of an instrument (the Luminosity Oscillations Imager) in the VIRGO package, to be flown on SOHO. Various problems such as p- and g-mode sensitivity, B and roll angle effects, modes isolation, cross-talk and guiding effects are treated for a given detector configuration. The computed sensitivity will enable the instrument to detect any type of modes for l < 6.B and roll angle effects can be compensated by using adequate filters for mode isolation. Guiding effects are small for p-modes. Also some other complex high-degree mode effects are treated.  相似文献   

18.
The mean number of particle scattering in a semi-infinite and finite slab for arbitrary energy sources are calculated by Padé approximants. Uniform source distribution is considered for the finite slab. For the semi-infinite medium we calculatethe number of particles due external radiation and at a particular point in the medium. Numerical calculations and comparisons were performed.  相似文献   

19.
This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino–electron scattering and neutrino–nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible, thereby allowing detection by conventional photomultipliers.

Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense, and transparent to its own scintillation light, making it practical for use in a large self-shielding apparatus. The central region of a full-sized detector would be a stainless steel tank holding approximately 135 metric tons of liquid neon. Inside the tank and suspended in the liquid neon would be several thousand photomultipliers.

Monte Carlo simulations of gamma ray backgrounds have been performed assuming liquid neon as both shielding and detection medium. Gamma ray events occur with high probability in the outer parts of the detector. In contrast, neutrino scattering events occur uniformly throughout the detector. We discriminate background gamma ray events from events of interest based on a spatial maximum likelihood method estimate of event location. Background estimates for CLEAN are presented, as well as an evaluation of the sensitivity of the detector for p–p neutrinos. Given these simulations, the physics potential of the CLEAN approach is evaluated.  相似文献   


20.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号