共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
深海超短基线声学定位系统计算目标水平距离的一种新方法 总被引:3,自引:0,他引:3
对深海环境中工作的潜器或设备载体进行定位测量是深海调查的重要任务之一,本文基于射线声学原理对超基线声学定位系统的定位数据提出了一种迭代处理算法,能够得到非常精确的水平距离测量结果,这种方法对于大洋调查的深拖系统和其他下水设备定位有重要的现实意义。 相似文献
5.
超短基线水声定位系统是海洋工程及水下无人系统中应用较广泛的精密仪器设备,为了提高对水下目标的定位精度,在使用前需对其进行校准。描述了一种基于最小二乘法迭代修正的超短基线水声定位系统校准方法,该方法以最小二乘法为基本原理,通过多次迭代修正的方式,修正基阵与GPS天线之间的平移偏差以及基阵与罗经之间的旋转偏差,从而提高系统的测量精度,最终通过湖上试验验证了该方法的有效性。 相似文献
6.
作为水下探测设备的载体,深拖系统可长时间大范围的进行海洋调查,其水下位置的准确与否,将直接关系到探测资料的可用度。该文从深拖水下导航定位的关键技术问题出发,总结了适用于深拖系统的水下定位方法,重点介绍了具备高稳定度、高精度等诸多优点的超短基线声学定位系统。结合实例,阐述了超短基线定位工作原理、误差分析及数据处理方法,在拖曳系统匀速直线运动状态下,基于抗差自适应卡尔曼滤波算法对超短基线定位数据进行了处理,滤除了定位数据中的跳点,得到了较平滑且与原始数据相吻合的滤波数据。 相似文献
7.
8.
9.
从1990年中期以来,由于全球定位系统的出现,水面载体的定位已不成问题。今天,使用简单的装置(除了部队特别的应用之外)任何水面载体都可以精确地定位。因为电磁波在水中第一厘米很快地衰减,GPS不能在水下工作。传统的可用系统和根据水面浮标与超短基线(USBL)声学定位系统引出来的长基线声学定位系统一样,不能满意地解决定位问题。 相似文献
10.
现有对超短基线水声定位系统的误差研究多集中在静态领域,鲜有文献对其动态误差进行研究。 以 GAPS 作为主要试验设备对超短基线水声定位系统的动态误差进行了相关研究,提出了一种超短基线水声定位系统动态定位误差测试方法。使用圆概率误差半径进行度量,并通过湖上实验对 GAPS 的动态误差进行了测算,为水下定位系统校准/标定方法的研究奠定了重要基础。 相似文献
11.
12.
13.
14.
The effective tracking area of ultra short baseline (USBL) systems strongly relates to the safety of autonomous underwater vehicles (AUVs). This problem has not been studied previously. A method for determining the effective tracking area using acoustic theory is proposed. Ray acoustic equations are used to draw rays, which ascertain the effective space. The sonar equation is established in order to discover the available range of the USBL system and the background noise level using sonar characteristics. The available range defines a hemisphere like enclosure. The overlap of the effective space with the hemisphere is the effective area for USBL systems tracking AUVs. Lake and sea trials show the proposed method's validity. 相似文献
15.
随着GPS技术的发展,具有RTK功能的GPS接收机不但在平面位置上可以达到厘束级,而且以WGS84为参考椭球的垂直高程也可以达到厘束级,因而被广泛地应用于海岸带测量中。本文介绍了RTKGPS在海域勘界、无验潮模式水深测量方面的一些具体应用。 相似文献
16.
17.
18.
Precise Positioning of Ocean Bottom Seismometer by Using Acoustic Transponder and CTD 总被引:1,自引:0,他引:1
Shiobara Hajime Nakanishi Ayako Shimamura Hideki Mjelde Rolf Kanazawa Toshihiko Berg Eivind W. 《Marine Geophysical Researches》1997,19(3):199-209
We have obtained precise estimates of the position of Ocean Bottom Seismometers (OBS) on the sea bottom. Such estimates are usually uncertain due to their free falling deployment. This uncertainty is small enough, or is correctable, with OBS spacing of more than 10 km usually employed in crustal studies. But, for example, if the spacing is only 200 m for OBS reflection studies, estimates of the position with an accuracy of the order of 10 m or more is required.The determination was carried out with the slant range data, ship position data and a 1D acoustic velocity structure calculated from Conductivity–Temperature–Depth (CTD) data, if they are available. The slant range data were obtained by an acoustic transponder system designed for the sinker releasing of the OBS or travel time data of direct water wave arrivals by airgun shooting. The ship position data was obtained by a single GPS or DGPS. The method of calculation was similar to those used for earthquake hypocenter determination.The results indicate that the accuracy of determined OBS positions is enough for present OBS experiments, which becomes order of 1 m by using the DGPS and of less than 10 m by using the single GPS, if we measure the distance from several positions at the sea surface by using a transponder system which is not designed for the precise ranging. The geometry of calling positions is most important to determine the OBS position, even if we use the data with larger error, such as the direct water wave arrival data. The 1D acoustic velocity structure should be required for the correct depth of the OBS. Although it is rare that we use a CTD, even an empirical velocity structure works well. 相似文献