首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

2.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

3.
The high-temperature and high-pressure experiment on natural block rock indicates that dehydration-melting of hydrous biotite (Bi) and partial melting of felsic minerals in garnet-biotite-plagioclase gneiss are mainly controlled by temperature, while mineral phase transformation is not only controlled by temperature-pressure conditions but also genetically associated with hydrous mineral dehydration-melting and partial melting of felsic minerals. According to the characteristics of biotite dehydration-melting and garnet transformation reaction, three stages may be distinguished: (1) when the experimental temperature is 700℃, biotite transforms to ilmenite (Ilm) + magnetite (Mt) + H2O and garnet to magnetite (Mt); (2) when the temperature is 730-760℃, biotite is dehydrated and melted and transformed into K2O-rich melt + Ilm + Mt, and garnet, into hypersthene (Hy) + cordierite (Crd); (3) when the temperature is up to or higher than 790℃, biotite is dehydrated and melted and transformed into melt + Hy +  相似文献   

4.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   

5.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

6.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   

7.
在对胶北荆山群麻粒岩相富铝岩石中石榴石、黑云母的成分环带进行深入研究基础上,选取不同粒径、与不同矿物相邻的石榴石、黑云母各微区点成分,利用石榴石-黑云母温度计分别进行了温度估算。确定在黑云母含量较高的岩石(V_(Grt)/V_(Bt)≤1)中,利用大颗粒石榴石(d≥1500μm)晶体核部(或靠近长英质矿物一侧的晶体幔部)成分与基质中远离石榴石等镁铁矿物处于长英质矿物之间的黑云母核部成分配合。通过石榴石-黑云母温度计可以获得相当可信的变质峰期温度。但是对于黑云母含量极低的岩石(V_(Grt)/V_(Bt)≥6),由于黑云母的成分普遍遭到了强烈改造。使得温度估算结果异常偏低,因此不适合采用石榴石-黑云母温度计估算峰期温度。同一岩石中,采用不同的相邻石榴石-黑云母矿物对晶体边缘成分获得的温度值差异较大,反映它们在峰期后发生Fe-Mg交换反应并达到封闭温度平衡状态的程度不同,因此利用石榴石-黑云母温度计难以获得准确的封闭温度。通过热力学计算,建立了一个新的石榴石-黑云母温度计公式。确定胶北荆山群所经历的变质峰期温度为720~770℃,峰期后最低相对封闭温度为480~500℃。  相似文献   

8.
An assemblage consisting of corundum, sapphirine, spinel, cordierite, garnet, biotite and bronzite is described from the Messina area of the Limpopo Mobile Belt, and consideration given to its petrogenesis. Various geothermometers and geobarometers have been applied in an attempt to determine the temperatures and pressures of metamorphism.
A former coexistence of garnet and corundum is suggested to have developed during the earliest high pressure phase of the metamorphism, where temperatures exceeded 800°C and pressures as high as 10kbar may have been experienced. Subsequently, continuous retrograding reactions from medium pressure granulite facies at about 800°C and 8kbar towards amphibolite facies generated spinel, cordierite, sapphirine and possibly also bronzite. The most notable reaction was probably of the form: garnet + corundum = cordierite + sapphirine + spinel.  相似文献   

9.
I. A. Tararin 《Petrology》2008,16(2):193-209
Geological, mineralogical, and geothermobarometric data testify that the regional metamorphism of the terrigenous protolith of the Kolpakovskaya Series, which composes the stratigraphic basement of the Kamchatka Median Crystalline Massif, corresponded to the kyanite mineral subfacies of the amphibolite facies at temperatures of 560–660°C and pressures of 5.9–6.9 kbar. This metamorphism predetermined wide kyanite development in high-Al garnet-biotite plagiogneisses. The younger granitization and migmatization of the plagiogneisses took place at a decrease in the pressure (depth), as follows from the textures of kyanite reaction replacement by andalusite in both the metamorphic rocks and the vein synmetamorphic granitoids and pegmatites. The temperature of the granitization and migmatization processes in the plagiogneisses was estimated at 620–650°C, and the pressure was evaluated at 1.9–3.0 kbar. Acid leaching that accompanied the granitization and migmatization processes resulted in the intense replacement of biotite by sillimanite (fibrolite) and, to a lesser degree, muscovite in the metamorphic and vein magmatic rocks. The highest temperature orthopyroxene-cordierite-biotite-orthoclase-plagioclase-quartz mineral assemblages were determined to have been formed in the Kolpakovskaya Series at a temperature of 830–840°C not by the regional metamorphism but in contact aureoles around gabbro-granitoid intrusions of the Lavkinskii intrusive complex of Oligocene-Miocene age in garnet-biotite and kyanite-garnet-biotite plagiogneisses of the amphibolite facies and cannot thus be regarded as evidence of an early granulite stage in the metamorphism of these rocks.  相似文献   

10.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

11.
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on me  相似文献   

12.
Abstract The metamorphic history of the Archaean Superior Province crystalline basement in the Palaeoproterozoic Ungava Orogen attests to the importance of structural and geohydrological controls on a retrograde amphibolite-granulite transition. Two distinct metamorphic suites, separated in age by nearly one billion years, are recognized in extensively exposed tonalitic to dioritic metaplutonic gneisses. The older suite comprises c. 2.7-Ga granulite facies assemblages (orthopyroxene-clinopyroxene-hornblende-plagioclase-ilmenite ± biotite ± quartz) that record moderate pressures (±5 kbar) and high temperatures (±800° C). A younger, c. 1.8-Ga suite resulted from amphibolitization of the granulites and is characterized by regionally extensive amphibolite facies mineral zones that broadly parallel the basal décollement of the overlying Proterozoic Cape Smith Thrust Belt. Deformation/mineral growth relationships in the amphibolitized basement indicate that extensive hydration and re-equilibration of the Archaean granulites occurred during thrust belt deformation. The transition from granulite facies to amphibolite facies assemblages is characterized by the growth of garnet-hornblende-quartz ° Cummingtonite coronas between plagioclase and orthopyroxene-clinopyroxene, as well as titanite coronas on ilmenite. Multi-equilibrium thermobarometry on the coronitic assemblages documents re-equilibration of the granulitic gneiss to 7.7 kbar at 644° C in the south and 9.8 kbar at 700° C in the north. The variably deformed, amphibolite facies domain sandwiched between the coronitic garnet zone and the basal décollement is marked by significant metasomatic changes in major element concentrations within tonalite. These changes are compatible with equilibrium flow of an aqueous-chloride fluid down a temperature gradient. The source of fluids for basement hydration/metasomatism is interpreted to be dehydrating clastic rocks in the overlying thrust belt, with fluid flow probably focused along the basal décollement.  相似文献   

13.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

14.
Numerous lenses of eclogite occur in a belt of augen orthogneisses in the Gubaoquan area in the southern Beishan orogen, an eastern extension of the Tianshan orogen. With detailed petrological data and phase relations, modelled in the system NCFMASHTO with thermocalc , a quantitative P–T path was estimated and defined a clockwise P–T path that showed a near isothermal decompression from eclogite facies (>15.5 kbar, 700–800 °C, omphacite + garnet) to high‐pressure granulite facies (12–14 kbar, 700–750 °C, clinopyroxene + sodic plagioclase symplectitic intergrowths around omphacite), low‐pressure granulite facies (8–9.5 kbar, ~700 °C, orthopyroxene + clinopyroxene + plagioclase symplectites and coronas surrounding garnet) and amphibolite facies (5–7 kbar, 600–700 °C, hornblende + plagioclase symplectites). The major and trace elements and Sm–Nd isotopic data suggest that most of the Beishan eclogite samples had a protolith of oceanic crust with geochemical characteristics of an enriched or normal mid‐ocean ridge basalt. The U–Pb dating of the Beishan eclogites indicates an Ordovician age of c. 467 Ma for the eclogite facies metamorphism. An 39Ar/40Ar age of c. 430 Ma for biotite from the augen gneiss corresponds to the time of retrograde metamorphism. The combined data from geological setting, bulk composition, clockwise P–T path and geochronology support a model in which the Beishan eclogites started as oceanic crust in the Palaeoasian Ocean, which was subducted to eclogite depths in the Ordovician and exhumed in the Silurian. The eclogite‐bearing gneiss belt marks the position of a high‐pressure Ordovician suture zone, and the calculated clockwise P–T path defines the progression from subduction to exhumation.  相似文献   

15.
We discuss upper-amphibolite to granulite facies, early Palaeozoic metamorphism and partial melting of aluminous greywackes from the Sierra de Comechingones, SE Sierras Pampeanas of Central Argentina. Consistent P–T estimates, obtained from equilibria involving Al and Ti exchange components in biotite and from more traditional thermobarometric equilibria, suggest that peak metamorphism of the exposed section took place at an essentially constant pressure of 7–8 kbar, and at temperatures ranging from 650 to 950 °C. Mineral compositions record an initial decompression, after peak metamorphism, of c. 1.5 kbar, which was accompanied by a cooling of c. 100 °C. Upper-amphibolite facies gneisses consist of the assemblage Qtz+Pl+Bt+Grt+Rt/Ilm. The transition to the granulite facies is marked by the simultaneous appearance of the assemblage Kfs+Sil and of migmatitic structures, suggesting that the amphibolite to granulite transition in the Sierra de Comechingones corresponds to the beginning of melting. Rocks with structural and/or chemical manifestations of partial melting range from metatexites, to diatexites, to melt-depleted granulites, consisting of the assemblage Grt+Crd+Pl+Qtz+Ilm±Ath. The melting stage overlapped at least partially with decompression, as suggested by the occurrence of cordierite, in both the migmatites and the residual granulites, of two distinct textural types: idiomorphic porphyroblasts (probably representing peritectic cordierite) and garnet-rimming coronas. Metapelitic rocks are unknown in the Sierra de Comechingones. Therefore, it appears most likely that the Al-rich residual assemblages found in the migmatites and residual granulites were formed by partial melting of muscovite- and sillimanite-undersaturated metagreywackes. We propose a mechanism for this that relies on the sub-solidus stabilization of garnet and the ensuing changes in the octahedral Al content of biotite with pressure and temperature.  相似文献   

16.
The Reading Prong is part of the Precambrian basement whichis discontinuously exposed in the north-central Appalachians.Precambrian rocks in the northeastern Prong consist of diversegneisses which were plastically deformed, metmorphosed to thehornblende granulite facies, and intruded by syntectonic granitesaround 1150 m.y. ago. Sillimanite-garnet-biotite-quartz-two feldspar paragneisses(locally with hornblende or cordierite and without sillimanite)are one of the predominate lithologies in this area. Micro-probeand wet chemical analyses show biotites from these assemblageshave variable Fe/Mg mol. ratios (3.5–0.3) and containappreciable Ti and A1. The biotites are not zoned with respectto Fe or Mg (except for a systematic decrease in the Fe/Mg ratioin rims contiguous with garnet), however Ti is typically depletedin rim compositions with a reciprocal increase of octahedralA1. Garnets are principally solutions of almandine and pyrope(Fe/Mg mol. ratio, 13.1–1.2) with minor grossularite andspessartine components. They are compositionally zoned, withFe concentrated in rims and Mg in cores (particularly wherethey are contiguous with biotite). The analyzed garnets arehomogeneous with respect to Ca and Mn. The most iron-rich biotitesand garnets are found associated with hornblende. The partitioning of Fe and Mg between the interiors of coexistinggarnet and biotite is uniform within each locality sampled.Although the partitioning is variable on a regional scale, thisappears to reflect the non-ideality of the distribution (a resultof the large and variable octahedral Ti and A1 concentrationsin biotite) and not any major, systematic variations in progrademetamorphic conditions. Low temperature alteration of these prograde assemblages issporadically present in paragneisses west of the Hudson Riverand includes associations of: phengitic muscovite, epidote,clinozoisite, chlorite, and secondary calcite. Isotopic agedata (Sutter & Dallmeyer, 1972) suggest slow uplift of thissegment of the Reading Prong, and it appears that these alterationfeatures developed as a result of prolonged cooling followingthe 1150 m.y. metamorphism. In an attempt to re-equilibrateto the lower temperature conditions during uplift, localizedexchange of Fe and Mg occurred between contiguous garnet andbiotite. Alteration is more widespread in the easternmost paragneisseswhere textural, chemical, and isotopic data suggest these secondaryfeatures are, in part, a result of retrograde metamorphism duringone or more Paleozoic orogenic events recorded in the surroundingterrain.  相似文献   

17.
Metamorphic temperatures and pressures of the Archean Miyun Group were determined from orthopyroxene-clinopyroxene, garnet-clinopyroxene, garnet-biotite and δO Q 18 -δO Mt 18 geothermometers and orthopyroxene barometer. The results show that the temperature in the first metamorphic stage of the Miyun Group is 820°+50°C and the pressure about 10 kb, which suggests that the granulite facies occurs under moderate pressures with a geothermal gradient of 22°–25°C/km. The corresponding burial depth is about 35 km. The temperature prevailing during the second metamorphic stage is in the range 650°–700°C, indicating a moderate condition between granulite and high grade amphibolite facies. Oxygen isotope data also show that the temperature of later superimposed regression metamorphism of high green schist facies in this area may be within the range of 470°–560°C.  相似文献   

18.
The Chinese Altai orogen formed in the Paleozoic is an important part of the Central Asian Orogenic Belt (CAOB), and the study on the metamorphism will provide novel and robust constraints on its tectonic evolution. In this study, we investigate our newly recognized garnet–orthopyroxene–cordierite granulites at Wuqiagou area in the southern Chinese Altai. Detailed petrographic study and P–T estimates suggest four distinct metamorphic stages of mineral assemblages: (1) pre–peak (M1) stage containing the spinel–cordierite–bearing association or biotite–plagioclase–quartz–bearing inclusion–phase assemblage, with P–T conditions of 3.0–4.0 kbar/700–750 °C; (2) peak ultrahigh–temperature (UHT) (M2) stage represented by relatively coarse–grained garnet–orthopyroxene–cordierite–bearing porphyroblastic assemblage, with high–Al2O3 contents (up to ∼8.7 wt%) in orthopyroxene and P–T conditions of ∼8.0 kbar/∼980 °C; (3) post–peak high–temperature granulite facies (M3) stage consisted of orthopyroxene–cordierite and cordierite–quartz corona assemblages, formed during cooling and moderate decompression; and (4) post–peak upper amphibolite facies (M4) stage represented by retrograde biotite–plagioclase–quartz intergrowths. These four discrete metamorphic stages define an anticlockwise P–T path involving a post–peak moderate decompression followed by nearly isobaric cooling process. LA–ICP–MS U–Pb age dating results of metamorphic zircons for UHT samples show two weighted mean ages of ∼390 Ma and ∼280 Ma. We propose that the M1 stage might occur in the middle Devonian, whereas the near–peak UHT stage probably occurred in the early Permian. The Permian UHT metamorphism was further supported by the monazite U–Th–Pb dating results (287.9 ± 2.1 Ma), reflecting a prominent HT–UHT reworking event in the late Paleozoic. We proposed that the Permian UHT reworking event in the southern Chinese Altai probably occurred in a post–orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of deep–derived magma as a result of the Tarim mantle plume activity.  相似文献   

19.
浙西南八都群泥质麻粒岩的变质演化与pT轨迹   总被引:2,自引:0,他引:2  
浙西南古元古界八都群是目前华夏地块最古老的变质基底,以往研究认为其变质程度仅达角闪岩相。近来在对遂昌地区八都群富铝片麻岩的研究过程中,发现了具有"石榴石+夕线石+正/反条纹长石+黑云母"特征组合的泥质麻粒岩,表明该地体曾经历麻粒岩相变质改造。通过岩相学与矿物化学分析,确定该岩石经历了3个阶段的演化过程,即:早期进变质阶段(M1),形成"石榴石+黑云母+白云母+夕线石+斜长石+石英"的矿物组合;变质峰期阶段(M2-3),形成"石榴石+夕线石+三元长石+黑云母+石英"的矿物组合;峰期后降压冷却阶段(M4),形成"黑云母+白云母+新生斜长石+石英"的矿物组合。岩石中石榴石普遍发育与降温过程有关的扩散成分环带和与降压过程有关的斜长石后生合晶。通过石榴石-黑云母温度计和GASP压力计估算变质峰期的温压条件为800~850℃、0.6~0.7 GPa,峰期后退变质阶段的温压条件为560~590℃、0.25~0.33 GPa,具有顺时针样式的pT演化轨迹,反映一种陆壳碰撞增厚、后又拉伸减薄的动力学过程。  相似文献   

20.
Paragneisses of the Ivrea-Verbano zone exhibit over a horizontal distance of 5 km mineralogical changes indicative of the transition from amphibolite to granulite facies metamorphism. The most obvious change is the progressive replacement of biotite by garnet via the reaction: a $${\text{Biotite + sillimanite + quartz }} \to {\text{ Garnet + K - feldspar + H}}_{\text{2}} {\text{O}}$$ which results in a systematic increase in the modal ratio g = (garnet)/(garnet + biotite) with increasing grade. The systematic variations in garnet and biotite contents of metapelites are also reflected by the compositions of these phases, both of which become more magnesian with increasing metamorphic grade. The pressure of metamorphism has been estimated from the Ca3Al2Si3O12 contents of garnets coexisting with plagioclase, sillimanite and quartz. These phases are related by the equilibrium: b $$\begin{gathered} 3 CaAl_2 {\text{Si}}_{\text{2}} {\text{O}}_{\text{8}} \rightleftharpoons Ca_3 Al_2 {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} + 2 Al_2 {\text{SiO}}_{\text{5}} + {\text{SiO}}_{\text{2}} \hfill \\ plagioclase garnet sillimanite quartz \hfill \\ \end{gathered} $$ which has been applied to these rocks using the available data on the mixing properties of plagioclase and garnet solid solutions. Temperature and f H 2O estimates have been made in a similar way using thermodynamic data on the biotite-garnet reaction (a) and the approximate solidus temperatures of paragneisses. Amphibolite to granulite facies metamorphism in the Ivrea-Verbano zone took place in the P-T ranges 9–11 kb and 700–820 °C. The differences in temperature and pressure of metamorphism between g= 0 and g = 1 (5 kms horizontal distance) were less than 50° C and approximately 1 kb. Retrogression and re-equilibration of garnets and biotites in the metapelites extended to temperatures more than 50° C below and pressures more than 1.5 kb below the peak of metamorphism, the degree of retrogression increasing with decreasing grade of the metamorphic “peak”. The pressure and temperature of the peak of metamorphism are not inconsistent with the hypothesis that the Ivrea-Verbano zone is a slice of upthrusted lower crust from the crust-mantle transition region, although it appears that the thermal gradient was too low for the zone to represent a near-vertical section through the crust. The most reasonable explanation of the granulite facies metamorphism is that it arose through intrusion of mafic rocks into a region already undergoing recrystallisation under amphibolite facies conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号