首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the data from more than 200 MTS sites distributed within different areas of the Chinese continent, general characteristics of upper mantle conductivity have been described. At least two conductive layers have been found in the upper mantle of some areas. The first is thin with a resistivity of a modicum to few tens m; the second one is thicker with a resistivity of one to m. Nearly 300 heat-flow values indicate that there exists an exponential correspondent relationship between a depth of the upper mantle conductive layer with a thickness and an average value of heat flow. Based on the above results, the top depth map of this upper mantle conductive layer has been outlined for parts of the Chinese continent. This conductive layer is basically consistent with the low velocity zone in the upper mantle, and Cenozoic tectonism and current seismicity are significantly related to the variation of depth of the conductive layer in the upper mantle. The possible origins of the conductive layers in the upper mantle have been discussed here.  相似文献   

2.
Electrical conductivity of the earth's crust and upper mantle   总被引:1,自引:0,他引:1  
This review summarizes recent results of electrical resistivity studies of the earth's crust and upper mantle. Where available, the data are discussed in the context of further regional geophysical information. Electrical resistivity is very sensitive to a wide range of petrological and physical parameters, e.g., to carbon, fluids, volatiles and enhanced temperatures, making electrical resistivity methods a powerful tool in crust and upper mantle investigations. Yet, the general increase in resistivity data of the crust and mantle has not ended the battle of explanations for anomalous crustal conductivities.  相似文献   

3.
矿物/岩石的电学性质是认识地球内部物质与结构的重要依据.高导物质(熔体、流体、石墨、磁铁矿等)能否显著影响上地幔的电性结构,取决于这些物质在上地幔中的连通性、电学性质和体积分数.近年来的研究表明,挥发分(水、二氧化碳)能够有效的降低橄榄岩的固相线,并提高玄武岩熔体的电导率.因此我们可以尝试用少量的熔体去解释上地幔某些区域的高导异常.但目前在高温高压下对这些熔体连通性的研究仍不足,我们并不清楚少量熔体在三维条件下是以何种形式连通的?俯冲带中的水主要储存在孔隙和含水矿物中.地慢矿物的蚀变,含水矿物脱水的过程中将产生含高浓度电解质的流体.二面角的观测证明了在高温高压下流体能在橄榄石间保持连通,因此我们可以认为这些高导流体对俯冲带的电性结构有很大程度的影响.石墨在橄榄岩体系中具有很高的二面角,不大可能以连通薄膜的形式在上地慢广泛存在,但石墨能否以网状形式连通?与机械的将蛇纹石和磁铁矿混合实验相比,绿泥石脱水产生的磁铁矿展示了更好的连通性.这意味着今后研究固相高导物质的连通性时不能忽略矿物在自然条件下的结构特征.  相似文献   

4.
上地幔岩石的电性一温度依赖关系研究   总被引:2,自引:0,他引:2  
大地电磁方法是地球物理电法的一个主要分支,目前已被广泛地用于深部地质构造的研究中.通过大地电磁方法获得地下介质电阻率(或电导率)参数的空间分布可为我们推断深部地质构造从电性的角度提供依据.而这种推断成立的基础主要建立在电性参数与其他物理参数之间广泛而深刻的内在联系上.其中,电性与温度之间的依赖关系因其在深部作用过程中所...  相似文献   

5.
The paper presents data on the distribution of the deep heat flow in Ukraine, thermal models of the tectonosphere, and electric conductors in the crust and mantle that are mostly related to partial melting and dehydration of rocks.  相似文献   

6.
The electrical conductivity of the Earth's upper mantle can be inferred from geomagnetic quiet-day,Sq, variations recorded at the world's observatories using the, coefficients of a spherical harmonic analysis (SHA) that separate the external (source) and internal (induced) parts of the surface field. The conductivity profile determined from such an analysis can be sensitive to special characteristics of the quiet field itself as well as the separation techniques employed. This review of the Sq-analysis features critical to a conductivity derivation is pictorially presented along with the equations for application of theSchmucker (1970) technique to theSHA coefficients for a conductivity determination. Three examples illustrate the use of these equations with differentSq models.  相似文献   

7.
Laboratory data of the electrical conductivity of rocks and minerals pertinent to the deeper crust and upper mantle and summarized. They are discussed in the context of a theory to calculate effective conductivities of materials in the state of partial melt. Most published data have been obtained by too rapid measurements, i.e. without reaching an equilibrium state of the sample. Conductivity measurements on a material similar to the composition of pyrolite are not het known, their importance is outlined. A global conductivity distribution obtained by electromagnetic induction studies is represented by a few results covering oceanic and continental areas. Till today it seems to be a doubtful venture to deduce the temperature of the upper mantle or even the existence of a partial molten asthenosphere from a global conductivity distribution. On a more local scale the correlation of electrical conductivity with temperature and state of the material seems to be more realistic. This is tentatively shown by two petrological models of the Afar depression in Ethiopia and of the midoceanic rift.  相似文献   

8.
9.
华北地区上地幔及过渡带电性结构研究   总被引:3,自引:3,他引:3       下载免费PDF全文
采用远参考道和Robust技术,处理了华北地区14个地磁台站资料,得到了相干度超过0.8的地磁测深响应函数.并将其转换为大地电磁测深的响应函数,获取了105~107 s周期范围内的视电阻率和相位.应用ρ+理论对数据进行了一致性检验和反演,结果表明417 km,850 km深度附近可能存在电性间断面.同时采用基于一维最光滑模型的Occam反演方法得到了300~1000 km范围的地幔电性结构,并与前人在其他地区的研究结果进行了对比.发现华北地区地幔过渡带的电导率在大兴安岭—太行山重力梯度带东西两侧表现不同,重力梯度带附近及西侧台站下方过渡带深度的电导率和北美的Tucson地区相当,而华北地区东部的电导率在地幔过渡带范围高出西侧约2~5倍,这很可能和太平洋板块的俯冲有关.  相似文献   

10.
Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, have not been simultaneously satisfied by an isotropic structure. In this paper available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, anelastic dispersion, sphericity, and gravity. We assume that the surface wave data represents an azimuthal average of actual velocities. Thus, we can treat the mantle as transversely isotropic. The resulting models for average Earth, average ocean, and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low-velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggestive. For most of the Earth SH > SV in the vicinity of the low-velocity zone. Neat the East Pacific Rise, however, SV > SH at depth, consistent with ascending flow. Anisotropy is as important as temperature in causing radial and lateral variations in velocity. The models have a high velocity nearly isotropic layer at the top of the mantle that thickens with age. This layer defines the LID, or seismic lithosphere. In the Pacific, the LID thickens with age to a maximum thickness of ~50 km. This thickness is comparable to the thickness of the elastic lithosphere. The LID thickness is thinner than derived using isotropic or pseudo-isotropic procedures. A new model for average Earth is obtained which includes a thin LID. This model extends the fit of a PREM, type model to shorter period surface waves.  相似文献   

11.
Studia Geophysica et Geodaetica - Magnetovariation methods, which are applicable to study the mantle conductivity, require long lasting registration of natural magnetic field variations. Such data...  相似文献   

12.
The problem of the determination of thermomechanical conditions in the upper mantle under a moving lithospheric plate at a given shear stress does not have a unique solution. Given a fixed heat flux from the lower mantle, two types of motion are possible in the mantle: subcritical (slower and colder) and supercritical (faster and hotter). In this work, it is shown that, if these modes are rather close to each other (in the near-critical state of the mantle), transitions from one mode to another and backward are possible. The calculated period of a change in the mantle state amounts to ~0.3 Myr for the Pacific plate. The oscillatory regime of the mantle state can manifest itself in the activity pulsations of hotspots located near fast separating mid-ocean ridges.  相似文献   

13.
14.
Upper mantle peridotite bodies at the earth's surface contain relict structures and microstructures which provide direct information on the role and the mechanisms of shear localisation in the upper mantle. Deformation which occurred at high temperatures (T>950±50°C) is relatively homogeneous within domains ranging in scale from a few kilometres to a few tens of kilometres. Below 950±50°C strain is localised into centimetre to several hundred metre wide shear zones which commonly contain hydrated mylonitic peridotites. The microstructures developed in the peridotites suggest there is a correlation between the occurrence of shear localisation and the occurrence of strain softening and brittle deformation processes. The most important strain softening processes are inferred to be structural and reaction induced softening. Structural softening processes include dynamic recrystallisation and strain-induced transitions from dislocation creep to some form of grain-size-sensitive (GSS) creep. Reaction induced softening is related to the formation of fine grained polyphase reaction products which deform by GSS creep and the formation of weak sheet silicates such as phlogopite, chlorite, talc and antigorite. From experimental studies these softening processes and brittle deformation processes are inferred to occur mainly at temperatures less than about 910±160°C. This temperature range is inferred to be a significant rheological transition in the upper mantle. Below 910±160°C deformation during orogenesis may be accommodated by an anastomosing network of hydrated mylonitic shear zones with a distinct, perhaps weak, rheology. At higher temperatures strain is accommodated in much wider deformation zones.On the scale of the lithosphere the degree of localisation may be different to that determined at the scale of the periodotite massif. An anastomosing network of hundred metre wide mylonitic shear zones forming 0.05–0.3 by volume fraction of the mantle lithosphere atT<950°C could accommodate inhomogeneous or homogeneous bulk deformation depending on the spatial distribution and ordering of the mylonite zones. The higher temperature deformation at deeper levels in the mantle could be markedly inhomogeneous being concentrated in shear zones with widths in the range of 2–20 km, alternatively these zones may widen significantly during deformation, resulting in a decrease in the degree of localisation with increasing bulk strain.  相似文献   

15.
Magnetotelluric soundings show that the conductivity increases in the asthenosphere. The depth of this conductivity zone decreases with an increase of the surface heat flow, i.e. in such cases the lithospheric plate is thinner. The depth of the velocity decrease of seismic shear wave (S waves) shows the same connection with the surface heat flow. The solidus of a mixed-volatile medium intersects the temperature curves belonging to different surface heat flows at depths where the conductivity increase and the velocity decrease appear. These connections point to partial melting in the asthenosphere, which can decrease the viscosity too, and help the movement of the lithospheric plates according to the ideas of global tectonics.The melt fraction of peridotite and pyrolite determined by Shankland and Waff from the effective conductivity of the asthenosphere is about 3–4% at 30 kbar and ato *=0.1 S m–1.In the upper mantle of old shields it is likely that there is no well-developed asthenosphere due to the low temperature. Over these so-called viscous anchors the lithospheric plates do not move. It is supposed that the conductivity increases observed below crystalline shields at a depth of about 300 km indicate the phase transition of rocks. Thus in these areas the surface of the phase transition can be at a higher position than in the younger tectonic units.  相似文献   

16.
Pressure effect on the electrical conductivity of San Carlos olivine was investigated by the newly installed electrical conductivity measurement system at China University of Geosciences. Electrical conductivity of San Carlos olivine aggregates was measured up to 12 GPa and 1475 K using the Walker-type multi-anvil apparatus equipped with eight WC cubes as the second-stage anvils. The pressure generation against applied load for the experimental assemblage was examined by phase transition of Bi,quartz, forsterite under different P-T conditions. To check the data validity of this new system, electrical conductivities of the serpentinites and talc samples were measured. The results are consistent with the published data of the same samples. Electrical conductivity(σ) of the San Carlos olivine aggregates and temperature(T) satisfy the Arrhenian formula: σ=σ0exp[.(ΔE+PΔV)/kT].The pre-exponential factor(σ0), activation energy(ΔE) and activation volume(ΔV) yield value of 7.74 S/m, 0.85 eV and 0.94cm3/mol, respectively. Electrical conductivities of the San Carlos olivine aggregates decline with increasing pressure at same temperatures. The negative pressure effect can be interpreted by strain energy model of defect energy together with the lattice deformation. In addition, the electrical conductivity-depth 1-D profile of the upper mantle was constructed based on our results and some assumptions. The calculated profile is concordant with the geophysical observation at the depth of 180–350 km beneath Europe, which indicates that the upper mantle beneath Europe might be dry.  相似文献   

17.
宁夏地区上地幔地震各向异性特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用宁夏6个三分向宽频带数字地震台记录的震中距在85°—110°,震级大于6级的远震SKS波震相作了偏振分析,采用Silver-Chan方法求得了分裂参数,获得了宁夏地区上地幔各向异性图像.结果表明,宁夏地区上地幔各向异性普遍存在,本区盐池台(YCI)所在的鄂尔多斯块体下方的各向异性可归结为"化石"各向异性,其它地区的各向异性特征则反映了正在进行的构造运动,由此可为贺兰山脉东西两侧复杂的运动图像提供深部证据.最后推测本区的青藏高原东北缘—阿拉善块体及银川断陷区壳、幔的运动是耦合的,而鄂尔多斯块体地区壳、幔的运动型式尚不明朗.  相似文献   

18.
Summary This investigation is based on records of 96 earthquakes withPa andSa written by the Press-Ewing instruments at Uppsala in the interval June 1961–December 1962.Pa andSa waves are observed for all earthquake regions, irrespective of distance, focal depth or path properties. They have significantly higher velocities under continents than under oceans, which demonstrates corresponding differences in the upper mantle. Continental velocities are 8.35 km/sec (Pa) and 4.56 km/sec (Sa), oceanic velocities 8.01 km/sec (Pa) and 4.45 km/sec (Sa). The most frequent periods are 10 sec (Pa) and 20 sec (Sa). They are independent of distance forPa but increase with distance forSa. The best developedPa andSa are obtained for earthquakes at focal depths less than about 60 km. The particle motion ofSa may be anything from pureSV to pureSH motion and has high correlation to the particle motion ofS. The apparent angles of emergence (in average 51° forPa and 54° forSa) vary with distance. On the basis of our observations it is suggested thatPa andSa propagate by multiple reflections under grazing incidence under the Moho discontinuity.
Zusammenfassung Die vorliegende Untersuchung gründet sich auf die Registrierungen von 96 Erdbeben mitPa- undSa-Wellen, die mit Hilfe der Press-Ewing Instrumente zu Uppsala im Zeitraum Juli 1961–Dezember 1962 aufgenommen wurden. DiePa- undSa-Wellen sind für alle seismischen Regionen beobachtet worden, unabhängig von Entfernung, Herdtiefe oder Wellenweg. Sie haben bedeutend höhere Geschwindigkeiten unter den Kontinenten als unter den Ozeanen, was einen entsprechenden Unterschied im oberen Erdmantel beweist. Die kontinentalen Geschwindigkeiten betragen 8.35 km/sec (Pa) und 4.56 km/sec (Sa), die ozeanischen Geschwindigkeiten 8.01 km/sec (Pa) und 4.45 km/sec (Sa). Die am häufigsten vorkommenden Perioden betragen 10 sec (Pa) und 20 sec (Sa). Sie sind unabhängig von der Entfernung fürPa aber wachsen mit der Entfernung fürSa. Die am besten entwickeltenPa- undSa-Wellen werden für Erdbeben mit kleinerer Herdtiefe als rund 60 km beobachtet. FürSa wird jede beliebige Orbitalbewegung zwischenSV undSH beobachtet. Sie hat eine hohe Korrelation mit der Orbitalbewegung vonS. Die scheinbaren Emergenzwinkel (durchschnittlich 51° fürPa und 54° fürSa) variieren mit der Entfernung. Auf Grund unserer Beobachtungen wird die Hypothese aufgestellt, dass sich diePa-undSa-Wellen durch Mehrfachreflexionen, bei tangentialem Einfall, unter der Moho-Diskontinuität ausbreiten.

Resumen La presente investigación está basada en los sismogramas de 96 terremotos, que muestranPa ySa, registrados por los sismógrafos de Uppsala (Press-Ewing), durante el periodo Junio 1961 a Diciembre 1962. Las fasesPa ySa se observan en todas las regiones sismicas, independientemente de la distancia, de la profundidad focal ó de las propiedades de la trayectoria. Tienen velocidades significativamente mayores bajo continentes que bajo los océanos, lo que demuestra la existencia de diferencias en el manto superior. Las velocidades continentales son 8.35 km/seg (Pa) y 4.56 km/seg (Sa) y las oceánicas 8.01 km/seg (Pa) y 4.45 km/seg (Sa). Los periodos mas frecuentes son 10 segundos paraPa y 20 segundos paraSa. Tales periodos son independientes de la distancia en el caso dePa pero crecen con ella paraSa. Las fasesPa ySa mejor desarrolladas se obtienen para terremotos cuya profundidad focal es inferior a los 60 kilómetros. El movimiento de la particula del suelo debido aSa puede ser de cualquier tipo, desde puroSV a puroSH, y muestra gran correlación con el movimiento de la particula deS. Los ángulos de emergencia aparentes (de promedio 51° paraPa y 54° paraSa) varian con la distancia. Basándonos en nuestras observaciones sugerimos quePa ySa se propagan por reflexión múltiple, bajo incidencia rozante bajo la discontinuidad de Mohorovii.
  相似文献   

19.
Numerical modeling of mantle convection by Liu (1994, Science, 264: 1904–1907) favors a two-layer convection, if the results are reinterpreted for the correct phase relations in (Mg,Fe)2SiO4. The resulting chemical isolation of the upper and lower mantle suggests a highly differentiated and layered upper mantle to account for the discrepancy between the observed compositions of mantle xenoliths and the cosmic abundances of elements. It is shown that a layered upper mantle with a hidden reservoir can have a structure consistent with the observed seismic velocity profiles and an average bulk composition corresponding to the cosmic abundances. The evolution of the upper mantle and the origin of komatiites are discussed in the context of the proposed model.  相似文献   

20.
Summary A two-dimensional flow model of an incompressible fluid with constant viscosity has been used to study the changes in the large-scale flow pattern (aspect ratio 4). Implications for convection in the Earth's mantle are discussed.
a ¶rt; mn uuu ua u¶rt;mu nm m unm ¶rt; uu uu mu ama¶rt;a. ¶rt;am mam ¶rt; uu amuu u.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号