首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The central sector of Mühlig-Hofmannfjellet (3°E/71°S) in western Dronning Maud Land (East Antarctic shield) is dominated by large intrusive bodies of predominantly orthopyroxene-bearing quartz syenites (charnockites). Metasedimentary rocks are rare; however, two distinct areas with banded gneiss–marble–quartzite sequences of sedimentary origin were found during the Norwegian Antarctic Research Expedition NARE 1989/90. Cordierite-bearing metapelitic gneisses from two different localities contain the characteristic mineral assemblage: cordierite + garnet + biotite + K-feldspar + plagioclase + quartz ± sillimanite ± spinel. Thermobarometry indicates equilibration conditions of about 650°C and 4 kbar. Associated orthopyroxene–garnet granulites, on the other hand, revealed pressures of about 8 kbar and temperatures of 750°C. The earlier granulite facies metamorphism is not well preserved in the cordierite gneisses as a result of excess K-feldspar combined with interaction with an H2O-rich fluid phase, probably released by the cooling intrusives. These two features allowed the original high-grade K-feldspar + garnet assemblages to recrystallize as cordierite–biotite–sillimanite gneisses, completely re-equilibrating them. Phase relationships indicate that the younger metamorphic event occurred in the presence of a fluid phase that varied in composition between the lithologies.  相似文献   

2.
A sequence of partial melting reactions at Mt Stafford, central Australia   总被引:8,自引:2,他引:6  
Metasedimentary gneisses show a rapid change in grade in a 10  km wide low- P /high- T  regional aureole at Mt Stafford in the Arunta Block, central Australia. Migmatite occurs in all but the lowermost of five metamorphic zones, which grade from greenschist (Zone 1) through amphibolite (Zones 2–3) to granulite facies (Zones 4–5). The sequence of partial melting reactions inferred for metapelitic rocks is dependant upon protolith, temperature and fluid conditions. The metapelite solidus in Zone 2 reflects vapour-present melting at P ≈3  kbar and T  ≈640  °C, melting having initially been controlled by the congruent breakdown of the assemblage Crd–Kfs–Bt–Qtz. At slightly higher temperature, andalusite in leucosome formed via the reaction Kfs+Qtz+Bt+H2O→And+melt; And+melt having been stabilized by the presence of boron. Sillimanite coaxially replaces andalusite in the high-grade portion of Zone 2. In Zone 3, large aluminosilicate aggregates in leucosome are armoured by Spl–Crd±Grt symplectites. Garnet partially pseudomorphs biotite, cordierite or spinel in high-grade portions of Zone 3. Zone 4 Grt–Crd–Opx-bearing metapsammite assemblages and garnet-bearing leucosome reflect T  ≈800  °C and P =2.2±0.9  kbar. In the model KFMASH system the principal vapour-absent melting step reflected significant modal changes related to the breakdown of the As–Bt tie-line and the establishment of the Spl–Crd tie-line; the bulk rock geochemistry of migmatite samples straddle the Spl–Crd tie-line. The aluminous bulk-rock composition of the common bedded migmatite restricted its potential to witness garnet-forming and orthopyroxene-forming reactions, minor textural and modal changes in and above Zone 3 reflecting biotite destablization in biotite-poor assemblages.  相似文献   

3.
Petrographic analysis is a useful, but underused tool to aid in distinguishing between subsolidus and anatetic-related textures in migmatites. This study focuses on assessing the relative contributions of these two processes in the development of migmatitic orthogneiss textures in the Velay Massif, French Massif Central. The results of this study show that subsolidus processes are more important in the development of migmatitic textures in the orthogneiss than anatectic leucosome development. Four textural stages are identified from the mylonitic non-anatectic orthogneiss, annealed, migmatitic orthogneiss to diatexite. The monomineralic K-feldspar and plagioclase–muscovite banding was transformed with increasing temperature to polymineralic plagioclase–quartz–muscovite and K-feldspar–quartz–muscovite layers by the wetting of feldspar boundaries during heterogeneous nucleation of quartz from a fluid phase at high surface energy triple points. A further increase of temperature led to the growth of K-feldspar probably related to production of small amounts of melt in plagioclase rich aggregates, controlled by muscovite abundance. Solid state annealing processes in conjunction with incipient anatexis resulted in the formation of apparent granitic-like textures in plagioclase dominated aggregates. By contrast, in K-feldspar dominated aggregates exclusively subsolidus processes prevail, leading to the development of coarse grained leucosome. With the onset of biotite dehydration melting the plagioclase-dominated aggregates are destroyed by the melt whereas the K-feldspar aggregates may be preserved.  相似文献   

4.
Upper amphibolite facies felsic gneiss from Broken Hill records the metatexite to schlieren diatexite to massive diatexite transition in a single rock type over a scale of tens to hundreds of metres. The metatexites are characterized by centimetre‐scale segregation of melt into leucosomes to form stromatic migmatite. The schlieren diatexites are characterized by the disaggregation of the rocks and the development of schlieren migmatite. The massive diatexites represent a higher degree of disaggregation, lack schlieren and contain plagioclase and K‐feldspar phenocrysts. The transition from metatexite to schlieren diatexite and massive diatexite was heterogeneous with both disaggregation of the rock on a grain scale and disaggregation of the rock into centimetre‐ to metre‐scale rafts. As melt contents increased, the proportion of material disaggregated on a grain scale increased. The high proportion of melt needed to form diatexites at upper amphibolite facies conditions was the result of an influx of hydrous fluid at temperatures just above the solidus of the diatexites. Nearby metapelitic rocks, with a slightly higher solidus temperature, undergoing subsolidus muscovite breakdown are the likely source of the fluid. Continued heating during and after the influx of fluid led to melt contents of up to c. 60 mol.% in the massive diatexite. The metatexite zone probably involved little added fluid. Continued deformation during cooling and melt crystallization resulted in the extensive development of schlieren and late‐stage melt segregations and melt‐rich shear bands in the schlieren diatexite zone. The rocks of the massive diatexite zone lack these late‐stage segregations, consistent with the cessation of D2 deformation prior to them developing a crystal framework.  相似文献   

5.
The Gföhl Unit is the largest migmatite terrain of the Variscan orogenic root domain in Europe. Its genesis has been until now attributed to variable degrees of in situ partial melting. In the Rokytná Complex (Gföhl Unit, Czech Republic) there is a well-preserved sequence documenting the entire migmatitization process on both outcrop and regional scales. The sequence starts with (i) banded orthogneiss with distinctly separated monomineralic layers, continuing through (ii) migmatitic mylonitic gneiss, (iii) schlieren migmatite characterised by disappearance of monomineralic layering and finally to (iv) felsic nebulitic migmatite with no relics of the original banding.

While each type of migmatite shows a distinct whole-rock geochemical and Sr–Nd isotopic fingerprint, the whole sequence evolves along regular, more or less smooth trends for most of the elements. Possible mechanisms which could account for such a variation are that the individual migmatite types (i) are genetically unrelated, (ii) originated by equilibrium melting of a single protolith, (iii) formed by disequilibrium melting (with or without a small-scale melt movement) or (iv) were generated by melt infiltration from external source. The first scenario is not in agreement with the field observations and chemistry of the orthogneisses/migmatites. Neither of the remaining hypotheses can be ruled out convincingly solely on whole-rock geochemical grounds. However in light of previously obtained structural, petrologic and microstructural data, this sequence can be interpreted as a result of a process in which the banded orthogneiss was pervasively, along grain boundaries, penetrated by felsic melt derived from an external source.

In terms of this melt infiltration model the individual migmatites can be explained by different degrees of equilibration between the bulk rock and the passing melt. The melt infiltration can be modelled as an open-system process, characterised by changes of the total mass/volume and accompanied by gains/losses in many of the major- and trace elements. The modelling of the mass balance resulted in identification of a component added by a heterogeneous nucleation of feldspars, quartz and apatite from the passing melt. This is in line with the observed presence of new albitic plagioclase, K-feldspar and quartz coatings as well as resorption of relict feldspars. At the most advanced stages (schlieren and nebulitic migmatites) the whole-rock trace-element geochemical variations document an increasing role for fractional crystallization of the K-feldspar and minor plagioclase, with accessory amounts of monazite, zircon and apatite.

The penetrating melt was probably (leuco-) granitic, poor in mafic components, Rb rich, with low Sr, Ba, LREE, Zr, U and Th contents. It probably originated by partial melting of micaceous quartzo-feldspathic rocks.

If true and the studied migmatites indeed originated by a progressive melt infiltration into a single protolith resembling the banded orthogneiss, this until now underappreciated process would have profound implications regarding rheology and chemical development of anatectic regions in collisional orogens.  相似文献   


6.
A detailed study based on textural observations combined with microanalysis [back scattered electron imaging (BSE) and electron microprobe analysis (EMPA)] and microstructural data transmission electron microscopy (TEM) has been made of K-feldspar micro-veins along quartz–plagioclase phase and plagioclase–plagioclase grain boundaries in granulite facies, orthopyroxene–garnet-bearing gneiss's (700–825 °C, 6–8 kbar) from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. The K-feldspar micro-veins are commonly associated with quartz and plagioclase and are not found in quartz absent regions of the thin section. This association appears to represent a localised reaction texture resulting from a common high grade dehydration reaction, namely: amphibole + quartz = orthopyroxene + clinopyroxene + plagioclase + K-feldspar + H2O, which occurred during the granulite facies metamorphism of these rocks. There are a number of lines of evidence for this. These include abundant Ti-rich biotite, which was apparently stable during granulite facies metamorphism, and total lack of amphibole, which apparently was not. Disorder between Al and Si in the K-feldspar indicates crystallisation at temperatures >500 °C. Myrmekite and albitic rim intergrowths in the K-feldspar along the K-feldspar–plagioclase interface could only have formed at temperatures >500–600 °C. Symplectic intergrowths of albite and Ca-rich plagioclase between these albitic rim intergrowths and plagioclase suggest a high temperature grain boundary reaction, which most likely occurred at the start of decompression in conjunction with a fluid phase. Relatively high dislocation densities (>2 × 109 to 3 × 109/cm2) in the K-feldspar suggest plastic deformation at temperatures >500 °C. We propose that this plastic deformation is linked with the extensional tectonic environment present during the mafic underplating event responsible for the granulite facies metamorphism in these rocks. Lastly, apparently active garnet grain rims associated with side inclusions of K-feldspar and quartz and an exterior K-feldspar micro-vein indicate equilibrium temperatures within 20–30 °C of the peak metamorphic temperatures estimated for the sample (770 °C). Contact between these K-feldspar micro-veins and Fe-Mg silicate minerals, such as garnet, orthopyroxene, clinopyroxene or biotite along the interface, is observed to be very clean with no signs of melt textures or alteration to sheet silicates. This lends support to the idea that these micro-veins did not originate from a melt and, if fluid induced, that the water activity of these fluids must have been relatively low. All of these lines of evidence point to a high grade origin for the K-feldspar micro-veins and support the hypothesis that they formed during the granulite facies metamorphism of the metabasite layers in an extensional tectonic environment as the consequence of localised dehydration reactions involving the breakdown of amphibole in the presence of quartz to orthopyroxene, clinopyroxene, plagioclase, K-feldspar and H2O. It is proposed that the dehydration of the metabasite layers to an orthopyroxene–garnet-bearing gneiss over a 4-km traverse in the upper Val Strona during granulite facies metamorphism was a metasomatic event initiated by the presence of a high-grade, low H2O activity fluid (most likely a NaCl–KCl supercritical brine), related to the magmatic underplating event responsible for the Mafic Formation; and that this dehydration event did not involve partial melting. Received: 15 February 2000 / Accepted: 26 June 2000  相似文献   

7.
Dehydration melting of muscovite in metasedimentary sequences is the initially dominant mechanism of granitic melt generation in orogenic hinterlands. In dry (vapour-absent) crust, muscovite reacts with quartz to produce K-feldspar, sillimanite, and monzogranitic melt. When water vapour is present in excess, sillimanite and melt are the primary products of muscovite breakdown, and any K-feldspar produced is due to melt crystallization. Here we document the reaction mechanisms that control nucleation and growth of K-feldspar, sillimanite, and silicate melt in the metamorphic core of the Himalaya, and outline the microstructural criteria used to distinguish peritectic K-feldspar from K-feldspar grains formed during melt crystallization. We have characterized four stages of microstructural evolution in selected psammitic and pelitic samples from the Langtang and Everest regions: (a) K-feldspar nucleates epitaxially on plagioclase while intergrowths of fibrolitic sillimanite and the remaining hydrous melt components replace muscovite. (b) In quartzofeldspathic domains, K-feldspar replaces plagioclase by K+–Na+ cation exchange, while melt and intergrowths of sillimanite+quartz form in the aluminous domains. (c) At 7–8 vol.% melt generation, the system evolves from a closed to open system and all phases coarsen by up to two orders of magnitude, resulting in large K-feldspar porphyroblasts. (d) Preferential crystallization of residual melt on K-feldspar porphyroblasts and coarsened quartz forms an augen gneiss texture with a monzogranitic-tonalitic matrix that contains intergrowths of sillimanite+tourmaline+muscovite+apatite. Initial poikiloblasts of peritectic K-feldspar trap fine-grained inclusions of quartz and biotite by replacement growth of matrix plagioclase. During subsequent coarsening, peritectic K-feldspar grains overgrow and trap fabric-aligned biotite, resulting in a core to rim coarsening of inclusion size. These microstructural criteria enable a mass balance of peritectic K-feldspar and sillimanite to constrain the amount of free H2O present during muscovite dehydration. The resulting modal proportion of K-feldspar in the Himalayan metamorphic core requires vapour-absent conditions during muscovite dehydration melting and leucogranite formation, indicating that the generation of large volumes of granitic melts in orogenic belts is not necessarily contingent on an external source of fluids.  相似文献   

8.
Gneisses and migmatites of the Gföhl unit (Moldanubian Zone, Bohemian Massif) range from banded mylonitic orthogneiss with recrystallized monomineralic bands, through stromatic (metatexite) and schlieren (inhomogeneous diatexite) migmatite, to isotropic nebulite (homogeneous diatexite). This sequence was classically attributed to increasing degree of anatexis. Under the microscope, the evolution is characterized by progressive destruction of the monomineralic banding that characterizes the original mylonitic orthogneiss. Throughout, the mineral assemblage is biotite–K‐feldspar–plagioclase–quartz ± garnet ± sillimanite, but the mineral compositions exhibit systematic changes with progressive disintegration of the layering. From banded orthogneiss to nebulite, the garnet composition changes systematically, Alm75→94Prp17→0.8Grs2.5→1.2Sps2→11 and XFe = 0.45→0.99 and for biotite, XFe = 0.80→1. This is consistent with a decrease in equilibration temperature and pressure of 790 °C and 8.5–6 kbar, to 690 °C and 5–4 kbar respectively. There is also a systematic change of whole‐rock composition, marked by an increase in SiO2 (71→77 wt%) and XFe (0.62→0.85) and by a decrease in Al2O3 (16→13 wt%) and CaO (1.50→0.43 wt%). Assuming that the rocks started with the same composition, these systematic changes indicate open‐system behaviour. The predicted consequences of various open‐system processes are assessed using thermodynamic modelling. The observed variations are interpreted as being a consequence of melt flow through, and interaction with the rocks, and, to change the rock composition sufficiently, a large volume of melt must have been involved.  相似文献   

9.
辽吉东部层状混合岩的成因   总被引:1,自引:0,他引:1  
刘光启 《吉林地质》1990,9(1):42-49
辽吉东部的层状混合岩与上、下围岩始终保持整合接触,反映它的体系基本上是封闭的,没有外来组份的加入。其组构、岩石化学、微量元素和稀土资料等表明层状混合岩不足岩浆型的,而是重熔岩浆型的,其原岩是沉积变质岩。  相似文献   

10.
The study area covers volcanic-volcanosedimentary units of Eocene age in the Sivas-Ula? area from Turkey. The pyroclastic (tuffaceous claystone/siltsone/sandstone, crystal ash tuff) and volcanic (basalt, basaltic andesite, andesite) rocks of the Karacalar member from the Kaleköy Formation include volcanogenic (plagioclase, augite, hornblende, biotite), diagenetic (K-feldspar, mixed-layered chlorite-smectite/C-S, chlorite, analcime) and post-volcanic (calcite, dolomite, quartz) minerals. The volcanogenic (plagioclase), diagenetic (K-feldspar, C-S, chlorite), postvolcanic (quartz, calcite, dolomite) and detrital (illite) minerals were observed in the epiclastic (shale, siltstone, calcareous siltstone, sandstone, calcareous sandstone) and chemical (limestone, gypsum) rocks of the Yapali member from this formation. C-S + K-feldspar zoning is widely developed by due to the interaction between sea-water and volcanic glass in basic-intermediate composition, on the basis of optic and electron microscopes and also X-rays data. This zone corresponds to the deeper parts of the Sivas basin in the Eocene period and show vertically a transition into zeolite zone in approximately northern parts of the basin (Yavu area).  相似文献   

11.
The Mt Stafford area in central Australia preserves a low-pressuregreenschist- to granulite-facies regional aureole. The metasedimentarysequence has been divided into five zones from greenschist (Zone1) to granulite facies (Zone 4) and a zone of hybrid diatexiteformed from the introduction of granitic magma into the high-grademigmatites (Zone 5). Melt production was dominated by a seriesof multivariant biotite breakdown reactions, not the univariantreactions suggested by previous studies. Although the threemain metasedimentary rock types produced similar amounts ofmelt at the highest grades, their melt production historiesdiffered markedly as a function of temperature. Aluminous metapelitesproduced more melt at lower temperatures (Zones 2 and 3), whereasmetapsammite and cordierite granofels experienced an additionalmajor melt-producing step at higher temperatures (upper Zone3 and Zone 4). This melting step involved the breakdown of biotiteto produce garnet, K-feldspar and melt, and in some rocks theproduction of orthopyroxene. Melt production in Zone 4 exceeded25 mol %, resulting in the formation of in situ diatexites.Complex relationships involving aluminosilicate porphyroblastsresulted in the breakdown of biotite and aluminosilicate beingdrawn out over a wide temperature range, from subsolidus conditionsto temperatures close to 750°C. Initially, much of the meltingdeveloped around the aluminosilicate porphyroblasts during thebreakdown of coexisting biotite, aluminosilicate and quartz.However, much of the rock was chemically isolated from the porphyroblastsand could not react to produce melt. As temperatures rose, thepresence of the large isolated aluminosilicate porphyroblastscontrolled the spatial development of quartz-absent, spinel-presentcompositional domains, the formation of spinel being governedby the silica-undersaturated breakdown of coexisting biotiteand aluminosilicate. KEY WORDS: NCKFMASHTO; metapelite; granulite facies; petrogenetic grid; partial melting; THERMOCALC  相似文献   

12.
The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.  相似文献   

13.
In the uppermost parts of the Higher Himalayan Crystallines (HHC) of the Great Himalaya, widespread in situ partial melting of sillimanite+K-feldspar gneiss resulted in the formation of migmatite and resultant melt accumulation near the South Tibetan Detachment System (STDS) during various deformation events along the Dhauli Ganga valley in Garhwal. The oldest migmatite phase, designated as the Me1, parallels the main foliation Sm as the stromatite layers and concordant leucogranite bands. Younger melt phases Me2, Me3 and Me5 are recorded along small-scale ductile thrusts, extensional fabric and structureless patches, respectively. It is only the Me4 melting phase that is evidenced by large-scale melt migration along cross-cutting irregular veins. These were possible conduits for migration and accumulation of melt into larger leucogranite bodies like the Malari granite (19.0± 0.5 Ma).  相似文献   

14.
Feldspar grain-size reduction occurred due to the fracturing of plagioclase and K-feldspar, myrmekite formation and neocrystallization of albitic plagioclase along shear fractures of K-feldspar porphyroclasts in the leucocratic granitic rocks from the Yecheon shear zone of South Korea that was deformed under a middle greenschist-facies condition. The neocrystallization of albitic plagioclase was induced by strain energy adjacent to the shear fractures and by chemical free energy due to the compositional disequilibrium between infiltrating Na-rich fluid and host K-feldspar. With increasing deformation from protomylonite to mylonite, alternating layers of feldspar, quartz and muscovite developed. The fine-grained feldspar-rich layers were deformed dominantly by granular flow, while quartz ribbons were deformed by dislocation creep. With layer development and a more distributed strain in the mylonite, lower stresses in the quartz-rich layers resulted in a larger size of dynamically recrystallized quartz grains than that of the protomylonite.  相似文献   

15.
Polymineralic aggregates composed of clinopyroxene, Fe-Ti oxide minerals, apatite and accessory K-feldspar, biotite, and amphibole are enclosed in cumulus plagioclase grains in the Middle Zone of the Skærgaard intrusion. The chemistry of the minerals in the aggregates, and the textural relations between the aggregates and the host plagioclase grains indicate that they represent inclusions of the contemporaneous melt of the Skærgaard intrusion. Through mass balance calculations a quantitative estimate of the melt composition for this level in the intrusion can be obtained, and this estimate confirms that the silica content in the Middle Zone melt was similar to, or possibly even lower than, the silica content in the initial Skærgaard melt, and relatively enriched in iron.  相似文献   

16.
The Ross of Mull pluton consists of granites and granodioritesand intrudes sediments previously metamorphosed at amphibolitefacies. The high grade and coarse grain size of the protolithis responsible for a high degree of disequilibrium in many partsof the aureole and for some unusual textures. A band of metapelitecontained coarse garnet, biotite and kyanite prior to intrusion,and developed a sequence of textures towards the pluton. InZone I, garnet is rimmed by cordierite and new biotite. In ZoneII, coarse kyanite grains are partly replaced by andalusite,indicating incomplete reaction. Coronas of cordierite + muscovitearound kyanite are due to reaction with biotite. In the higher-gradeparts of this zone there is complete replacement of kyaniteand/or andalusite by muscovite and cordierite. Cordierite chemistryindicates that in Zone II the stable AFM assemblage (not attained)would have been cordierite + biotite + muscovite, without andalusite.The observed andalusite is therefore metastable. Garnet is unstablein Zone II, with regional garnets breaking down to cordierite,new biotite and plagioclase. In Zone III this breakdown is welladvanced, and this zone marks the appearance of fibrolite andK-feldspar in the groundmass as a result of muscovite breakdown.Zone IV shows garnet with cordierite, biotite, sillimanite,K-feldspar and quartz. Some garnets are armoured by cordieriteand are inferred to be relics. Others are euhedral with Mn-richcores. For these, the reaction biotite + sillimanite + quartz garnet + cordierite + K-feldspar + melt is inferred. Usinga petrogenetic grid based on the work of Pattison and Harte,pressure is estimated at 3·2 kbar, and temperature atthe Zone II–III boundary at 650°C and in Zone IV asat least 750°C. KEY WORDS: contact metamorphism; disequilibrium  相似文献   

17.
Microstructural, electron backscatter diffraction (EBSD), and misorientation analyses of a migmatitic granulite-facies orthogneiss from the exhumed lower crust of a Cretaceous continental arc in Fiordland, New Zealand show how deformation was accommodated during and after episodes of melt infiltration and high-grade metamorphism. Microstructures in garnet, omphacite, plagioclase, and K-feldspar suggest that an early stage of deformation was achieved by dislocation creep of omphacite and plagioclase, with subsequent deformation becoming partitioned into plagioclase. Continued deformation after melt infiltration resulted in strain localization in the leucosome of the migmatite, where a change of plagioclase deformation mechanism promoted the onset of grain boundary sliding, most likely accommodated by diffusion creep, in fine recrystallized plagioclase grains. Our results suggest three distinctive transitions in the rheology of the lower crust of this continental arc, where initial weakening was primarily achieved by deformation of both omphacite and plagioclase. Subsequent strain localization in plagioclase of the leucosome indicates that the zones of former melt are weaker than the restite, and that changes in deformation mechanisms within plagioclase, and an evolution of its strength, primarily control the rheology of the lower crust during and after episodes of melting and magma addition.  相似文献   

18.
南阿尔金吐拉地区所出露的变质泥质岩和变质基性岩普遍经历了中压麻粒岩相变质作用,其中变泥质岩以出现石榴子石+夕线石+长石+黑云母+石英为特征,而基性麻粒岩则以石榴子石+单斜辉石+紫苏辉石+斜长石+石英为特征,具有典型中压相系的麻粒岩相变质作用矿物组合,即显示"巴罗式"变质作用特征。野外宏观特征显示这套变泥质岩普遍经历了原地深熔作用,并局部发生混合岩化作用。岩相学观察结果显示泥质片麻岩保留了关键的深熔作用显微结构证据:(1)石榴子石内部发育有钾长石、石英和斜长石组成的矿物集合体,可能代表了早期熔体的假象;(2)黑云母颗粒边界发育尖锐的、不规则的微斜长石,而且黑云母边界溶蚀明显,形成锯齿状不规则的边界,指示深熔作用可能与黑云母的分解密切相关,即黑云母可能为深熔作用的主要反应相;(3)石英、斜长石或石榴子石颗粒边界发育圆珠状不规则的钾长石,而且颗粒边界或三联点中尖锐状钾长石与周围矿物的形成较小的二面角,有些甚至相互连通呈网络状,这也与它们继承了熔体结构特征一致;(4)不规则钾长石(或微斜长石)分布在石榴子石和夕线石附近,指示石榴子石和夕线石可能为深熔作用的残留相。锆石U-Pb定年结果显示麻粒岩相变质作用和相关深熔作用时代基本一致,主要发生在~450Ma。因此,吐拉地区的中压麻粒岩相变质作用和深熔作用明显要晚于南阿尔金地区榴辉岩和高压麻粒岩的峰期变质时代40~50Myr,而是与榴辉岩折返过程中麻粒岩相叠加变质作用的时代较为接近。但南阿尔金~450Ma的变质作用、深熔作用和岩浆作用是否为独立的构造热事件抑或深俯冲板片折返阶段的产物,这还需要今后进一步的工作验证。  相似文献   

19.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   

20.
Located in semi-arid regions of northwestern China, Datong basin is a Quaternary sedimentary basin, where groundwater is the most important source for water supply. It is very important to study groundwater characteristics and hydrogeochemical processes for better management of the groundwater resource. We have identified five geochemical zones of shallow groundwater (between 5 and 80 m) at Datong: A. Leaching Zone (Zone I); B. Converging Zone (Zone II); C. Enriching Zone (Zone III); D. Reducing Zone (Zone IV); E. Oxidizing Zone (Zone V). In Zones I, II, and V and some parts of Zones III and IV, hydrolysis of albite/K-feldspar/chalcedony system and/or albite/K-feldspar/quartz system enhanced concentrations of Na+, K+, HCO3 and silicate. In Zone I, dissolution of carbonate and hydrolysis of feldspar generally controlled the groundwater chemistry. Infiltration of meteoric water promoted the formation of HCO3 in the water. In Zone II, the main geochemical processes influencing the groundwater chemistry were dissolutions of calcite and dolomite, ion exchange and evaporation. In Zones III and IV, in addition to ion exchange, evaporation and precipitation of calcite and dolomite, leaching of NaHCO3 in saline–alkaline soils dominated the water quality. Zone IV was under anoxic condition, and reduction reactions led to the decrease of SO42−, NO3 and occurrence of H2S, with the highest arsenic content (mean value of 366 μg/L), far exceeding Maximum Contaminant Level (MCL). Abnormal arsenic in the groundwater resulted in endemic disease of waterborne arsenic poisoning among local people. Zone V overlapped Zone I was intensively affected by coal mining activities. Sulfide minerals, such as pyrite, would have been oxidized when exposed to air due to coal mining, which directly added sulfate to groundwater and thus increased SO42− concentration. Oxidization of sulfide minerals also decreased pH and promoted dissolutions of calcite and dolomite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号