首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flexible and informative vector approach to the problem of physical libration of the rigid Moon has been developed in which three Euler differential equations are supplemented by 12 kinematic ones. A linearized system of equations can be split into an even and odd systems with respect to the reflection in the plane of the lunar equator, and rotational oscillations of the Moon are presented by superposition of librations in longitude and latitude. The former is described by three equations and consists of unrestricted oscillations with a period of T 1 = 2.878 Julian years (amplitude of 1.855″) and forced oscillations with periods of T 2 = 27.201 days (15.304″), one stellar year (0.008″), half a year (0.115″), and the third of a year (0.0003″) (five harmonics altogether). A zero frequency solution has also been obtained. The effect of the Sun on these oscillations is two orders of magnitude less than that of the Earth. The libration in latitude is presented by five equations and, at pertrubations from the Earth, is described by two harmonics of unrestricted oscillations (T 5 ≈ 74.180 Julian years, T 6 ≈ 27.347 days) and one harmonic of forced oscillations (T 3 = 27.212 days). The motion of the true pole is presented by the same harmonics, with the maximum deviation from the Cassini pole being 45.3″. The fifth (zero) frequency yields a stationary solution with a conic precession of the rotation axis (previously unknown). The third Cassini law has been proved. The amplitudes of unrestricted oscillations have been determined from comparison with observations. For the ratio $ \frac{{\sin I}} {{\sin \left( {I + i} \right)}} \approx 0.2311 $ \frac{{\sin I}} {{\sin \left( {I + i} \right)}} \approx 0.2311 , the theory gives 0.2319, which confirms the adequacy of the approach. Some statements of the previous theory are revised. Poinsot’s method is shown to be irrelevant in describing librations of the Moon. The Moon does not have free (Euler) oscillations; it has oscillations with a period of T 5 ≈ 74.180 Julian years rather than T ≈ 148.167 Julian years.  相似文献   

2.
The difference between Universal time (UT) and Dynamical time (TD), known as Delta T (ΔT) is tabulated for the first day of each year in the Astronomical Almanac. During the last four centuries it is found that there are large differences between its values for two consecutive years. Polynomial approximations have been developed to obtain the values of ΔT for any time of a year for the period AD 1620 to AD 2000 (Meeu 2000) as no dynamical theories describe the variations in ΔT. In this work, a new set of polynomials for ΔT is obtained for the period AD 1620 to AD 2007 that is found to produce better results compared to previous attempts.  相似文献   

3.
李勇 《天文学报》2007,48(2):256-268
“干支回推法”是针对中国历史时期所特有的干支材料而设计的新天文年代学方法.以一组假设的材料为例,系统地给出了该方法的完整求解过程.指出该方法的优势在于准确高效,能有效地处理某些年代学难题.此外,除材料的公历日期外还能将当时的历法细节一同迭代解出.  相似文献   

4.
Hoyt & Schatten (1998) claim that Simon Marius would have observed the sun from 1617 Jun 7 to 1618 Dec 31 (Gregorian calendar) all days, except three short gaps in 1618, but would never have detected a sunspot – based on a quotation from Marius in Wolf (1857), but mis‐interpreted by Hoyt & Schatten. Marius himself specified in early 1619 that for one and a half year... rather few or more often no spots could be detected... which was never observed before (Marius 1619). The generic statement by Marius can be interpreted such that the active day fraction was below 0.5 (but not zero) from fall 1617 to spring 1619 and that it was 1 before fall 1617 (since August 1611). Hoyt & Schatten cite Zinner (1952), who referred to Zinner (1942), where observing dates by Marius since 1611 are given but which were not used by Hoyt & Schatten. We present all relevant texts from Marius where he clearly stated that he observed many spots in different form on and since 1611 Aug 3 (Julian) = Aug 13 (Greg.) (on the first day together with Ahasverus Schmidnerus); 14 spots on 1612 May 30 (Julian) = Jun 9 (Greg.), which is consistent with drawings by Galilei and Jungius for that day, the latter is shown here for the first time; at least one spot on 1611 Oct 3 and/or 11 (Julian), i.e. Oct 13 and/or 21 (Greg.), when he changed his sunspot observing technique; he also mentioned that he has drawn sunspots for 1611 Nov 17 (Julian) = Nov 27 (Greg.); in addition to those clearly datable detections, there is evidence in the texts for regular observations. For all the information that can be compared to other observers, the data from Marius could be confirmed, so that his texts are highly credible. We also correct several shortcomings or apparent errors in the database by Hoyt & Schatten (1998) regarding 1612 (Harriot), 1615 (Saxonius, Tard´e), 1616 (Tard´e), 1617–1619 (Marius, Riccioli/Argoli), and Malapert (for 1618, 1620, and 1621). Furthermore, Schmidnerus, Cysat, David & Johann Fabricius, Tanner, Perovius, Argoli, and Wely are not mentioned as observers for 1611, 1612, 1618, 1620, and 1621 in Hoyt & Schatten. Marius and Schmidnerus are among the earliest datable telescopic sunspot observers (1611 Aug 3, Julian), namely after Harriot, the two Fabricius (father and son), Scheiner, and Cysat. Sunspots records by Malapert from 1618 to 1621 show that the last low‐latitude spot was seen in Dec 1620, while the first high‐latitude spots were noticed in June and Oct 1620, so that the Schwabe cycle turnover (minimum) took place around that time, which is also consistent with the sunspot trend mentioned by Marius and with naked‐eye spots and likely true aurorae. We consider discrepancies in the Hoyt & Schatten (1998) systematics, we compile the active day fractions for the 1610s, and we critically discuss very recent publications on Marius which include the following Maunder Minimum. Our work should be seen as a call to go back to the historical sources. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present two Arabic texts of historic observations of supernova SN 1006 from Yemen as reported by al‐Yamānī and Ibn al‐Daybac (14th to 16th century AD). An English translation of the report by the latter was given before (Stephenson & Green 2002), but the original Arabic text was not yet published. In addition, we present for the first time the earlier report, also from Yemen, namely by al‐Yamānī in its original Arabic and with our English translation. It is quite obvious that the report by Ibn al‐Daybac is based on the report by al‐Yamānī(or a common source), but the earlier report by al‐Yamānī is more detailed and in better (Arabic) language. We discuss in detail the dating of these observations. The most striking difference to other reports about SN 1006 is the apparent early discovery in Yemen in the evening of 15th of Rajab of the year 396h (i.e. AD 1006 April 17±2 on the Julian calendar), as reported by both al‐Yamānī and Ibn al‐Daybac, i.e. ∼1.5 weeks earlier than the otherwise earliest known reports. We also briefly discuss other information from the Yemeni reports on brightness, light curve, duration of visibility, location, stationarity, and color. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A technique for verifying the currently available reconstructions of solar activity in the preinstrumental epoch (prior to 1615 AD), covering time intervals up to 10 000 years, has been developed and tested. The technique is based on investigation of the possibility of predicting the actual sunspot numbers determined by means of telescopic observations using reconstructed solar series. Testing several paleoreconstructions over time intervals as long as 10 000 years has shown that they most likely contain only qualitative information about the behavior of solar activity in the past and are not very suitable for extracting quantitative information. It is shown that the recently suggested hypothesis that the current level of solar activity is highest in the last 8000 years is only an arbitrary assumption that can be neither confirmed nor refuted at the present level of knowledge about the past of our star.  相似文献   

7.
Given that the cause for the strong increase in 14C in AD 774/5 in Japanese and German trees is still a matter of debate (e.g. short gamma‐ray burst or solar super‐flare), we have searched in Arabic chronicles for reports about unusual transient celestial events. In the History of al‐Tabarī we found two (almost identical) reports about such an event. The group around caliph al‐Mansūr observed a transient event while on the way from Baghdad to Mecca on AD 775 Augusst 29– September 1 (Julian calendar). A celestial object (kawkab) was seen to fall or set (inqadda), and its trace (atharuhu) was seen for at least tens of minutes (up to 70–90 min) during morning twilight. The reports use the Arabic words kawkab and athar(uhu), which were also used in the known Arabic reports about supernovae SN 1006 and 1054, so that one might consider an interpretation as a nova‐like event. The kawkab (celestial object) was observed only during the morning twilight at a brightness of probably between about –3 and 0 mag. Such a brightness and time‐scale would be expected for optical kilonovae (at ∼3 to 9 kpc) in the context of short gamma‐ray bursts. There are no similar reports from eastern Asia for this time. However, the short reports are fully consistent with a bolide: The word kawkab can be used for meteor, the verb inqad. d. a normally means falling down, the word atharuhu can mean its trace. We therefore prefer the interpretation as bolide. We discuss in detail how to convert the Muslim calendar date to a date in the Julian calendar using first the calculated Islamic calendar and then considering the time when the crescent new moon could be visible at the given location. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The Moon’s physical libration in latitude generated by gravitational forces caused by the Earth’s oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth’s oblateness: a) has little effect on the instantaneous axis of Moon’s rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon’s celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse’s axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon’s poles of rotation move. The dynamical reason for the inclination of the Moon’s mean equator with respect to the ecliptic is oblateness of the body of the Moon.  相似文献   

9.
Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a precise probe for variability of the fine-structure constant, α , over cosmological time-scales. We constrain variation in α in 21 Keck/HIRES Si  iv absorption systems using the alkali-doublet (AD) method in which changes in α are related to changes in the doublet spacing. The precision obtained with the AD method has been increased by a factor of 3:     . We also analyse potential systematic errors in this result. Finally, we compare the AD method with the many-multiplet method, which has achieved an order of magnitude greater precision, and we discuss the future of the AD method.  相似文献   

10.
Given that a strong 14C variation in AD 775 has recently been suggested to be due to the largest solar flare ever recorded in history, it is relevant to investigate whether celestial events observed around that time may have been aurorae, possibly even very strong aurorae, or otherwise related to the 14C variation (e.g. a suggested comet impact with Earth's atmosphere). We critically review several celestial observations from AD 757 to the end of the 770s, most of which were previously considered to be true, and in some cases, strong aurorae; we discuss in detail the East Asian records and their wording. We conclude that probably none among the events after AD 770 was actually an aurora, including the event in AD 776 Jan, which was misdated for AD 774 or 775; the observed white qi phenomenon that happened above the moon in the south‐east was most probably a halo effect near the full Moon – too late in any case to be related to the 14C variation in AD 774/5. There is another report of a similar (or identical) white qi phenomenon above the moon, reported just before a comet observation and dated to AD 776 Jan; the reported comet observed by the Chinese was misdated to AD 776, but actually sighted in AD 767. Our critical review of East Asian reports of aurorae circa AD 775 shows some very likely true Chinese auroral displays observed and reported for AD 762; there were also several events prior to AD 771 that may have been aurorae but are questionable. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super‐flare or a short gamma‐ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super‐flares with ∼1035 erg of presumably solar‐type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M‐type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun – in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be ∼2000 stronger than the Carrington event as solar super‐flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only ∼24°), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4–6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ∼4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4‐6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and 10Be. The 1956 solar energetic particle event was followed by a small decrease in directly observed cosmic rays. We conclude that large solar super‐flares remain very unlikely as the cause for the 14C increase in AD 774/5. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The mainly endemic phytoplankton record of Lake Baikal has been used in this study to help interpret climate variability during the last 1000 years in central Asia. The diatom record was derived from a short core taken from the south basin and has been shown to be free from any sedimentary heterogeneities. We employ here a diatom-based inference model of snow accumulation on the frozen lake for the first time (r2boot=0.709; RMSEP=0.120 log cm). However, palaeoenvironmental reconstructions have been improved by the use of correction factors, specifically developed for the dominant phytoplankton (Aulacoseira baicalensis, Aulacoseira skvortzowii, Cyclotella minuta, Stephanodiscus meyerii and Synedra acus) in the south basin of Lake Baikal. Cluster analysis identifies three significant zones in the core, zone 1 (c. 880 AD–c. 1180 AD), zone 2 (c. 1180–1840 AD) and zone 3 (c. 1840–1994 AD), coincident with the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the period of recent warming, respectively. Our results indicate that S. acus dominated the diatom phytoplankton within zone 1 coincident with the MWP. S. acus is an opportunistic species that is able to increase its net growth when A. baicalensis does not. During this period, conditions are likely to have been unfavourable for the net increases in A. baicalensis growth due to the persistence of warm water in the lake, together with an increased length of summer stratification and delay in timing of the autumnal overturn. In zone 2, spring diatom crops blooming under the ice declined in abundances due in part to increased winter severity and snow cover on the lake. Accumulating snow on the lake is likely to have arisen from increased anticyclonic activity, resulting in prolonged winters expressed during the LIA. Thick, accumulating snow cover inhibits light penetration through the ice, thereby having negative effects on cell division rate and extent of turbulence underneath the ice. Consequently, only taxa whose net growth occurs during autumn overturn (C. minuta) predominate in the lake at this time. Diatom census data and reconstructions of snow accumulation suggest that warming in the Lake Baikal region started as early as c. 1750 AD, with a shift from taxa that bloom during autumn overturn to assemblages that begin to grow underneath the frozen lake in spring. Very recent increases and subsequent decline of S. acus in the surface sediments of the lake mirror monitoring records of this species over the last 50 years. Our study confirms that, over the last 1000 years, physical processes are important in determining planktonic diatom populations in the lake and highlights the value of integrated plankton, trap, and sediment studies for improving quantitative palaeoenvironmental reconstructions from fossil material.  相似文献   

13.
分析了基于XML进行软件设计的方法,并在乌鲁木齐天文站的数字钟软硬件改造中成功地运用了该方法。给出了天线控制程序中时间采集的基本方法。使用FT206数字钟,在计算世纪数时淘汰了复杂的数学公式,年月日的计算直接从儒略日推算,避免了天线控制计算机设置UT时间的复杂性。运用了基于XML的设计方法,使各种软件设计方法得以统一,便利交流和协作,容易发布,方便软件设计师和程序员协作,使基于Internet的软件开发模式成为可能。最后展望了基于 XML的设计方法的发展趋势。  相似文献   

14.
Pulsars are presently believed to be rotating neutron stars with large frozen-in magnetic fields normally assumed to be dipole fields. It has been shown that such a star must possess a magnetosphere if it rotates sufficiently rapidly. By assuming that the magnetic field is dipolar, and unaffected by the trapped particles in the magnetosphere, and that the field dipole axis is parallel to the rotation axis, Goldreich and Julian determined many of the properties of the magnetosphere. In this paper is given a self-consistent model of the closed field lines of a pulsar magnetosphere. Using this model, it is shown that, close to the star, the above assumptions of Goldreich and Julian are justified. Their results are extended to the oblique rotator as well as to stars with magnetic multipoles of arbitrary order and arbitrary orientation.Supported in part by the U.S. Atomic Energy Commission under Grant 2171T.  相似文献   

15.
Archaeointensity results from Greece for the last 2000 yr have been obtained using thermal and alternating field (AF) demagnetisation techniques. Most of the samples consisted of tiles and bricks derived from Byzantine churches which were epigraphically dated. The accuracy of the dating of the samples (to within a few years) and the comparison of the two techniques for measuring geomagnetic intensity combine to provide a good basis from which to derive meaningful conclusions — i.e. (i) About 70% of the archaeointensity measurements, made by the two methods, were highly compatible, differing less than ±7% from their mean. In 60% of the cases, the AF technique yielded higher palaeointensity results than that for thermal demagnetization. The results for the thermal and AF techniques are discussed in accordance with reliability criteria and attention is drawn to the reliability of archaeointensity data in general. (ii) An overall similarity of the intensity trend was observed for the last 400 years between the AF, the thermal demagnetization and a modelled intensity curve derived from the spherical harmonic coefficients since AD 1600. (iii) A decrease of intensity amounting to 40% is noted in the new data for the period since AD 400, and (iv) a non-dipole disturbance was noted at around AD 1300 in southern Greece, where the intensity changed by about 30% within a period of 30 years or so.  相似文献   

16.
The strong 14C increase in the year AD 774/5 detected in one German and two Japanese trees was recently suggested to have been caused by an impact of a comet onto Earth and a deposition of large amounts of 14C into the atmosphere (Liu et al. 2014). The authors supported their claim using a report of a historic Chinese observation of a comet ostensibly colliding with Earth's atmosphere in AD 773 January. We show here that the Chinese text presented by those authors is not an original historic text, but that it is comprised of several different sources. Moreover, the translation presented in Liu et al. is misleading and inaccurate. We give the exact Chinese wordings and our English translations. According to the original sources, the Chinese observed a comet in mid January 773, but they report neither a collision nor a large coma, just a long tail. Also, there is no report in any of the source texts about “dust rain in the daytime” as claimed by Liu et al. (2014), but simply a normal dust storm. Ho (1962) reports sightings of this comet in China on AD 773 Jan 15 and/or 17 and in Japan on AD 773 Jan 20 (Ho 1962). At the relevant historic time, the Chinese held that comets were produced within the Earth's atmosphere, so that it would have been impossible for them to report a “collision” of a comet with Earth's atmosphere. The translation and conclusions made by Liu et al. (2014) are not supported by the historical record. Therefore, postulating a sudden increase in 14C in corals off the Chinese coast precisely in mid January 773 (Liu et al. 2014) is not justified given just the 230Th dating for AD 783 ± 14. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Tempel—Tuttle彗星与近年的狮子座流星雨   总被引:1,自引:0,他引:1  
吴光节 《天文学报》2001,42(2):125-133
对狮子座流雨的历史进行了回顾和讨论,并利用“彗星-地球轨道分离(CEOS)及地球滞后彗星时间(TE-C)”统计图进行分析,发现几乎所有的狮子座流星都位于一个倾斜的方框内,而这倾斜方框械右边界的斜率大约为15m/s,方框的宽度大约为4yr,它表明,33年一度的狮子座流星雨一般不会有超过4年的爆发期,更细致的分析表明,最强的流星暴位于一弯曲的细窄条带,在慧星一次回归期,亮流星的比例将年衰减,这些事实,可以用运动,碎裂,扩散和尘埃彗尾模型进行解释,由15m/s速度得到的流星体尺度大小也与事实相容,并且,这表明与地球相遇的流星体粒子是以有限的速度偏离彗星时间(TE-C)就越长,由此倾斜方框的存在,可以对未来狮子座流星雨进行了预报,表明在1998-2000年期间将有较强的狮子座流星雨,中心在1999年,至于2000年以后,要在100多年以后才会有较强的流星暴,而狮子座流星雨的辉煌期可以说已经过去。  相似文献   

18.
An ephemeris has been obtained for Explorer 28 (IMP 3) which agrees well with 2 years of radio observations and with SAO observations a year later. This ephemeris is generated over the 3 year lifetime by a numerical integration method utilizing a set of initial conditions, at launch and without requiring further differential correction. Because highly eccentric orbits are difficult to compute with acceptable accuracy and because a long continuous arc has been obtained which compares with actual data to a known precision, this ephemeris may be used as a standard for computing highly eccentric orbits in the Earth-Moon system.Orbit improvement was used to obtain the initial conditions which generated the ephemeris. This improvement was based on correcting the energy by adjusting the semimajor axis to match computed times of perigee passage with the observed. This procedure may generate errors in semimajor axis to compensate for model errors in the energy; however this compensation error is also implicit in orbit determination itself.  相似文献   

19.
A large variation in 14C around AD 775 has been considered to be caused by one or more solar super‐flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakır in Turkey near the Turkish‐Syrian border), which were not only red, but also green‐yellow – being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super‐flares causing the 14C increase around AD 775: There are several reports about low‐ to mid‐latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi‐)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 – always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD ∼733 to ∼823, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles – reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked‐eye sunspots, we discuss two more Schwabe cycles until AD ∼844. The 14C record (from both Intcal and Miyake et al. 2013a) is anti‐correlated to auroral and sunspot activity, as expected from solar wind modulation of cosmic rays which produce the radiocarbon. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A statistical study of 228 flares on the three UV Ceti-type stars, i.e., YZ CMi, AD Leo, and EV Lac, is presented. Observations were gathered by Ichimura and Shimizu over a total monitoring time of 907 hours distributed over 18 years (1971 to 1988). Period analysis of flare activity was performed, and no periodicity was detected on the three stars for either the flare number rate or the energy rate in time-scales ranging from a year up to 14 years. Average colour of flares at peak was (U-B)=–0.98±0.17 and (B-V)=0.05±0.13. Cumulative number distributions of flare event time-integrated energies were solved by a least-squares method on a log-log plot for a power-law function to get both the constant of and the gradient , which were found to be similar among the three stars. The gradient showed that rare large flare events radiate most of the energy released by all the flare events in the monitoring time. The flare number rate and energy rate are similar if the power-law distributions are extended up to a specific maximum energy. In reality, the Kolmogorov-Smirnov test showed that the observed cumulative number distributions of flare event energy were not necessarily a power-law function. The monte-Carlo simulation, however, indicates that the monitoring time and/or the patrol observation time interval may not be long enough to get the average flare number rate and energy rate, especially at the upper energy limits which are statistically unreliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号