首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Asteroid 4 Vesta, believed to be the parent body of the howardite, eucrite, and diogenite (HED) meteorites, will be investigated by the Dawn orbiting spacecraft. Dawn carries a gamma ray and neutron detector (GRaND) that will measure and map some major‐ and trace‐element abundances. Drawing on HED geochemistry, we propose a mixing model that uses element ratios appropriate for the interpretation of GRaND data. Because the spatial resolution of GRaND is relatively coarse, the analyzed chemical compositions on the surface of Vesta will likely reflect mixing of three endmember components: diogenite, cumulate eucrite, and basaltic eucrite. Reliability of the mixing model is statistically investigated based on published whole‐rock data for HED meteorites. We demonstrate that the mixing model can accurately estimate the abundances of all the GRaND‐analyzed major elements, as well as of minor elements (Na, Cr, and Mn) not analyzed by this instrument. We also show how a similar mixing model can determine the modal abundance of olivine, and we compare estimated and normative olivine data for olivine‐bearing diogenites. By linking the compositions of well‐analyzed HED meteorites with elemental mapping data from GRaND, this study may help constrain the geological context for HED meteorites and provide new insight into the magmatic evolution of Vesta.  相似文献   

2.
Dawn has recently revealed that the surface of Vesta is heterogeneously covered by polymictic regoliths represented by mixtures of howardite, eucrite, and diogenite (HED) meteorites. Mixing relations of the HED suite are examined here using a new computational statistical approach of independent component analysis (ICA). We performed eight‐component ICA (Si, Ti, Al, Cr, Fe, Mn, Mg, and Ca) for 209 HED bulk‐rock compositions. The ICA results indicate that the HED bulk‐rock compositions can be reduced into three independent components (IC) and these IC vectors can reasonably explain compositional variation, petrographic observations, and the mixing relations of the HED suite. The IC‐1 vector represents a eucrite variation that extends from cumulate eucrite toward main‐group (MG) and incompatible‐element enriched eucrites. The IC‐2 vector represents a compositional variation of howardites that extends from diogenites to MG‐eucrites, indicating the well‐known two‐component mixing trend of diogenite and eucrite. The IC‐3 vector represents a compositional variation defined by diogenites and olivine‐bearing diogenites, suggesting mixing of olivine and orthopyroxene. Among the three ICs, the diogenite‐eucrite mixing trend IC‐2 is most statistically robust and dominates the compositional variations of the HED suite. Our ICA study further indicates that the combination of only three elements (Mg, Si, and Fe) approximates the eight‐component ICA model, and that the limited number of resolvable γ‐ray spectra obtained by the Dawn mission possibly discriminates olivine lithologies from the olivine‐free regolith breccias on the surface of Vesta.  相似文献   

3.
Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vesta's hydrogen is due to long‐term delivery of carbonaceous chondrite material.  相似文献   

4.
The Dawn mission has provided new evidence strengthening the identification of asteroid Vesta as the parent body of the howardite, eucrite, and diogenite (HED) meteorites. The evidence includes Vesta's petrologic complexity, detailed spectroscopic characteristics, unique space weathering, diagnostic geochemical abundances and neutron absorption characteristics, chronology of surface units and impact history, occurrence of exogenous carbonaceous chondritic materials in the regolith, and dimensions of the core, all of which are consistent with HED observations and constraints. Global mapping of the distributions of HED lithologies by Dawn cameras and spectrometers provides the missing geologic context for these meteorites, thereby allowing tests of petrogenetic models and increasing their scientific value.  相似文献   

5.
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta.  相似文献   

6.
The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial planets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history, and its relationship with vestoids and howardite‐eucrite‐diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east‐west and north‐south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite‐rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.  相似文献   

7.
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.  相似文献   

8.
Reliable quantitative mapping of minerals exposed on Vesta's surface is crucial for understanding the crustal composition, petrologic evolution, and surface modification of the howardite, eucrite, and diogenite (HED) parent body. However, mineral abundance estimates derived from visible–near infrared (VIS–NIR) reflectance spectra are complicated by multiple scattering, particle size, and nonlinear mixing effects. Radiative transfer models can be employed to accommodate these issues, and here we assess the utility of such models to accurately and efficiently determine modal mineralogy for a suite of eucrite and olivine‐bearing (harzburgitic) diogenite meteorites. Hapke and Shkuratov radiative transfer models were implemented to simultaneously estimate mineral abundances and particle size from VIS–NIR reflectance spectra of these samples. The models were tested and compared for laboratory‐made binary (pyroxene–plagioclase) and ternary mixtures (pyroxene–olivine–plagioclase) as well as eucrite and diogenite meteorite samples. Results for both models show that the derived mineral abundances are commonly within 5–10% of modal values and the estimated particle sizes are within the expected ranges. Results for the Hapke model suggest a lower detection limit for olivine in HEDs when compared with the Shkuratov model (5% versus 15%). Our current implementation yields lower uncertainties in mineral abundance (commonly <5%) for the Hapke model, though both models have an advantage over typically used parameters such as band depth, position, and shape in that they provide quantitative information on mineral abundance and particle size. These results indicate that both the Hapke and Shkuratov models may be applied to Dawn VIR data in a computationally efficient manner to quantify the spatial distribution of pyroxene, plagioclase, and olivine on the surface of Vesta.  相似文献   

9.
Here, we construct a comprehensive howardite, eucrite, and diogenite (HED) bulk chemistry data set to compare with Dawn data. Using the bulk chemistry data set, we determine four gamma‐ray/neutron parameters in the HEDs (1) relative fast neutron counts (fast counts), (2) macroscopic thermal neutron absorption cross section (absorption), (3) a high‐energy gamma‐ray compositional parameter (Cp), and (4) Fe abundance. These correspond to the four measurements of Vesta made by Dawn's Gamma Ray and Neutron Detector (GRaND) that can be used to discern HED lithologic variability on the Vestan surface. We investigate covariance between fast counts and average atomic mass (<A>) in the meteorite data set, where a strong correlation (r2 = 0.99) is observed, and we demonstrate that systematic offsets from the fast count/<A> trend are linked to changes in Fe and Ni concentrations. To compare the meteorite and GRaND data, we investigate and report covariance among fast counts, absorption, Cp, and Fe abundance in the HED meteorite data set. We identify several GRaND measurement spaces where the Yamato type B diogenites are distinct from all other HED lithologies, including polymict mixtures. The type B's are diogenites that are enriched in Fe + pigeonite + diopside ± plagioclase, relative to typical, orthopyroxenitic diogenites. We then compare these results to GRaND data and demonstrate that regions north of ~70°N latitude on Vesta (including the north pole) are consistent with type B diogenites. We propose two models to explain type B diogenite compositions in the north (1) deposition as Rheasilvia ejecta, or (2) type B plutons that were emplaced at shallow depths in the north polar region and sampled by local impacts. Lastly, using principal component (PC) analysis, we identify unique PC spaces for all HED lithologies, indicating that the corresponding GRaND measurables may be used to produce comprehensive lithologic maps for Vesta.  相似文献   

10.
Abstract— We demonstrate that the use of an established spectral deconvolution algorithm with mid‐infrared spectral libraries of mineral separates of varying grain sizes is capable of identifying the known mineral compositions and abundances of a selection of howardite, eucrite, and diogenite (HED) meteorite samples. In addition, we apply the same technique to mid‐infrared spectral emissivity measurements of Vesta that have been obtained from Cornell's Mid‐Infrared Asteroid Spectroscopy (MIDAS) Survey and the Infrared Space Observatory (ISO). Each Vesta measurement was made over a different range of longitudes. Our spectral deconvolution results to the Vesta spectra corroborate that Vesta's surface is howardite or eucrite‐like in composition and heterogeneous across its surface. The spectral fits produced by the linear deconvolution algorithm yields good results for the HED samples of known composition, thus giving us a high degree of confidence that our results for Vesta are valid.  相似文献   

11.
R.G. Mayne  J.M. Sunshine  S.J. Bus 《Icarus》2011,214(1):147-160
High quality VNIR spectra of 15 Vestoids, small asteroids that are believed to originate from Vesta, were collected and compared to laboratory spectra and compositional data for selected HED meteorites. A combination of spectral parameters such as band centers, and factors derived from Modified Gaussian Model fits (band centers, band strengths, calculation of the low to high-Ca pyroxene ratio) were used to establish if each Vestoid appeared most like eucrite or diogenite material, or a mixture of the two (howardite). This resulted in the identification of the first asteroid with a ferroan diogenite composition, 2511 Patterson. This asteroid can be used to constrain the size of diogenite magma chambers within the crust of Vesta. The Vestoids indicate that both large-scale homogeneous units (>5 km) and smaller-scale heterogeneity (<1 km) exist on the surface of Vesta, as both monomineralogic (eucrite or diogenite material alone) and mixed (both eucrite and diogenite) spectra are observed. The small-scale of the variation observed within the Vestoid population is predicted by the partial melting model, which has multiple intrusions penetrating into the crust of Vesta. It is much more difficult to reconcile the observations here with the magma ocean model, which would predict much more homogeneous layers on a large-scale both at the surface and with depth.  相似文献   

12.
Abstract— This study explores the controls of oxygen fugacity and temperature on the solubilities of Fe, Ni, Co, Mo, and W in natural eucritic liquids to better constrain the formation of eucritic melts. The solubilities of all five elements in molten silicate in equilibrium with FeNiCo‐, FeMo‐, and FeW‐ alloys increase with increasingly oxidizing conditions and decrease with decreasing temperatures. In applying these data to formation scenarios of the eucrite parent body, we find that the siderophile element abundances in eucrites (meteoritic basalts) cannot be explained by a single‐step partialmelting process from a chondritic, metal‐containing source. The Ni content of the partial melt is too high, and the W and Mo contents are too low compared to the abundances in eucritic meteorites. But Fe, Ni, and Co concentrations in eucrites can be modeled by metal‐silicate equilibrium during more or less complete melting of the eucrite parent body with subsequent fractional crystallization of olivine and orthopyroxene. However, the computed values of Mo are still too low and those of W too high when compared with Mo and W abundances in eucritic meteorites. One possibility is that the Mo and W partition coefficients strongly depend on pressure, although the howardite‐eucrite‐diogenite (HED) parent body only had a minimal pressure gradient (maximum interior pressure = 0.1 GPa). Alternatively, sulfides may have played some role in establishing Mo abundances.  相似文献   

13.
Abstract— The howardite‐eucrite‐diogenite (HED) clan is a group of meteorites that probably originate from the asteroid Vesta. Some of them are complex breccias that contain impact glasses whose compositions mirror that of their source regions. Some K‐rich impact glasses (up to 2 wt% K2O) suggest that in addition to basalts and ultramafic cumulates, K‐rich rocks are exposed on Vesta's surface. One K‐rich glass (up to 6 wt% K2O), with a felsic composition, provides the first evidence of highly differentiated K‐rich rocks on a large asteroid. They can be compared to the rare lunar granites and suggest that magmas generated in a large asteroid are more diverse than previously thought.  相似文献   

14.
Abstract— Available evidence strongly suggests that the HED (howardite, eucrite, diogenite) meteorites are samples of asteroid 4 Vesta. Abundances of the moderately siderophile elements (Ni, Co, Mo, W and P) in the HED mantle indicate that the parent body may have been completely molten during its early history. During cooling of a chondritic composition magma ocean, equilibrium crystallization is fostered by the suspension of crystals in a convecting magma ocean until the crystal fraction reaches a critical value near 0.80, when the convective system freezes and melts segregate from crystals by gravitational forces. The extruded liquids are similar in composition to Main Group and Stannern trend eucrites, and the last pyroxenes to precipitate out of this ocean (before convective lockup) span the compositional range of the diogenites. Subsequent fractional crystallization of a Main Group eucrite liquid, which has been isolated as a body of magma, produces the Nuevo Laredo trend and the cumulate eucrites. The predicted cumulate mineral compositions are in close agreement with phase compositions analyzed in the cumulate eucrites. Thus, eucrites and diogenites are shown to have formed as part of a simple and continuous crystallization sequence starting with a magma ocean environment on an asteroidal size parent body that is consistent with Vesta.  相似文献   

15.
Abstract— If Vesta is the parent body of the howardite, eucrite, and diogenite (HED) meteorites, then geo-chemical and petrologic constraints for the meteorites may be used in conjunction with astronomical constraints for the size and mass of Vesta to (1) determine the size of a possible metal core in Vesta and (2) model the igneous differentiation and internal structure of Vesta. The density of Vesta and petrologic models for HED meteorites together suggest that the amount of metal in the parent body is <25 mass%, with a best estimate of ~5%, assuming no porosity. For a porosity of up to 5% in the silicate fraction of the asteroid, the permissible metal content is <30%. These results suggest that any metal core in the HED parent body and Vesta is not unusually large. A variety of geochemical and other data for HED meteorites are consistent with the idea that they originated in a magma ocean. It appears that diogenites formed by crystal accumulation in a magma ocean cumulate pile and that most noncumulate eucrites (excepting such eucrites as Bouvante and Statinem) formed by subsequent crystallization of the residual melts. Modelling results suggest that the HED parent body is enriched in rare earth elements by a factor of ~2.5–3.5 relative to CI-chondrites and that it has approximately chondritic Mg/Si and Al/Sc ratios. Stokes settling calculations for a Vesta-wide, nonturbulent magma ocean suggest that early-crystallizing magnesian olivine, orthopyroxene, and pigeonite would have settled relatively quickly, permitting fractional crystallization to occur, but that later-crystallizing phases would have settled (or floated) an order of magnitude more slowly, allowing, instead, a closer approach to equilibrium crystallization for the more evolved (eucritic) melts. This would have inhibited the formation of a plagioclase-flotation crust on Vesta. Plausible models for the interior of Vesta, which are consistent with the data for HED meteorites and Vesta, include a metal core (<130 km radius), an olivine-rich mantle (~65–220 km thick), a lower crustal unit (~12–43 km thick) composed of pyroxenite, from which diogenites were derived, and an upper crustal unit (~23–42 km thick), from which eucrites originated. The present shape of Vesta (with ~60 km difference in the maximum and minimum radius) suggests that all of the crustal materials, and possibly some of the underlying olivine from the mantle, could have been locally excavated or exposed by impact cratering.  相似文献   

16.
Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock‐forming elements. From a circular, polar low‐altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole‐rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg‐rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine‐rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.  相似文献   

17.
In this paper, we present the first correlation of derived mineral abundances of V-class Asteroid 1929 Kollaa, 4 Vesta, and the HED meteorites. We demonstrate that 1929 Kollaa has a basaltic composition consistent with an origin within the crustal layer of 4 Vesta, and show a plausible genetic connection between Kollaa and the cumulate eucrite meteorites. These data support the proposed delivery mechanism of HED meteorites to the Earth from Vesta, and provide the first mineralogical constraint derived from the observation of a small V-class, Vesta family asteroid on the crustal thickness of 4 Vesta.  相似文献   

18.
Abstract— Many lines of evidence indicate that meteorites are derived from the asteroid belt but, in general, identifying any meteorite class with a particular asteroid has been problematical. One exception is asteroid 4 Vesta, where a strong case can be made that it is the ultimate source of the howardite‐eucrite‐diogenite (HED) family of basaltic achondrites. Visible and near‐infrared reflectance spectra first suggested a connection between Vesta and the basaltic achondrites. Experimental petrology demonstrated that the eucrites (the relatively unaltered and unmixed basaltic achondrites) were the product of approximately a 10% melt. Studies of siderophile element partitioning suggested that this melt was the residue of an asteroidal‐scale magma ocean. Mass balance considerations point to a parent body that had its surface excavated, but remains intact. Modern telescopic spectroscopy has identified kilometer‐scale “Vestoids” between Vesta and the 3:1 orbit‐orbit resonance with Jupiter. Dynamical simulations of impact into Vesta demonstrate the plausibility of ejecting relatively unshocked material at velocities consistent with these astronomical observations. Hubble Space Telescope images show a 460 km diameter impact basin at the south pole of Vesta. It seems that nature has provided multiple free sample return missions to a unique asteroid. Major challenges are to establish the geologic context of the HED meteorites on the surface of Vesta and to connect the remaining meteorites to specific asteroids.  相似文献   

19.
Numerous petrologic and geochemical studies so far on the howardite, eucrite, and diogenite (HED) meteorites have produced various crystallization scenarios for their parent body, believed to be the differentiated asteroid 4 Vesta. Structural analyses of diogenites can reveal important insights into postcrystallization deformation on the parent body. Recently published results (Tkalcec et al. 2013 ) of structural analysis on the olivine‐rich diogenite NWA 5480 reveal that it underwent solid‐state plastic deformation, although not at the base of a magma chamber. Dynamic mantle downwelling has been proposed as a plausible deformation mechanism (Tkalcec et al. 2013 ). The purpose of this study is to investigate whether the plastic deformation found in NWA 5480 is an isolated case. We expand the structural analysis on NWA 5480 and extend it to NWA 5784 and MIL 07001,6, two other samples of rare olivine‐rich diogenites, using electron‐backscattered‐diffraction (EBSD) techniques. Our EBSD results show that the diogenites analyzed in this study underwent solid‐state plastic deformation, confirming that the observed deformation of NWA 5480 was not an isolated case on the diogenite parent body. The lattice‐preferred orientations (LPOs) of olivine in NWA 5784 and NWA 5480 are clearly distinct from that typical for cumulate rocks at the base of magma chambers, indicating a different stress environment and a different deformation mechanism. The LPO of olivine in MIL 07001 is less conclusive. The structural results of this study suggest that plastic deformation occurred on the diogenite parent body at high temperatures (1273 < T ≤ 1573 K) in the solid state, i.e., after crystallization of the diogenites themselves, in a dynamic environment with active stress fields.  相似文献   

20.
Abstract— Two meteorites belonging to the howardite‐eucrite‐diogenite (HED) group fell recently in Rajasthan, India. One of these, Piplia Kalan, was classified as a eucrite and the other, Lohawat, as a howardite. In this study, we present the results of Mössbauer spectroscopic investigations of these two meteorites. We also compare the results with the Mössbauer experiments reported for the Kapoeta howardite and look for systematics in the Mössbauer spectra of HED meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号