首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Petrological and geochemical analyses of Miller Range (MIL) 03346 indicate that this meteorite originated from the same augitic cumulate layer(s) as the nakhlite Martian meteorites, but underwent rapid cooling prior to complete crystallization. As with the other nakhlites, MIL 03346 contains a secondary alteration assemblage, in this case consisting of iddingsite‐like alteration veins in olivine phenocrysts, Fe‐oxide alteration veins associated with the mesostasis, and Ca‐ and K,Fe‐sulfate veins. We compared the textural and mineralogical compositions of MIL 090030, 090032, and 090136 with MIL 03346, focusing on the composition and Raman spectra of the alteration assemblages. These observations indicate that the meteorites are paired, and that the preterrestrial olivine‐bound alteration assemblages were produced by weakly acidic brine. Although these alteration assemblages resemble similar assemblages in Nakhla, the absence of siderite and halite in the Miller Range nakhlites indicates that the parental alteration brine was comparatively HCO3? depleted, and less concentrated, than that which altered Nakhla. This indicates that the Miller Range nakhlite alteration brine experienced a separate evolutionary pathway to that which altered Nakhla, and therefore represents a separate branch of the Lafayette‐Nakhla evaporation sequence. Thin‐sections cut from the internal portions of these meteorites (away from any fusion crust or terrestrially exposed edge), contain little Ca‐sulfate (identified as gypsum), and no jarosite, whereas thin‐sections with terrestrially exposed edges have much higher sulfate abundances. These observations suggest that at least the majority of sulfate within the Miller Range nakhlites is terrestrially derived.  相似文献   

2.
Abstract— U, Th, and Pb isotopes and rare earth elements (REEs) in individual phosphate grains from martian meteorites Lafayette and Yamato‐000593/000749 were measured using a sensitive high‐resolution ion microprobe (SHRIMP). Observed U‐Pb data of 12 apatite grains from Yamato (Y‐) 000593/000749 are well represented by linear regressions in both “conventional” 2D isochron plots and the 3D U‐Pb plot (total Pb/U isochron), indicating that the formation age of this meteorite is 1.53 ± 0.46 Ga (2σ). On the other hand, the data of nine apatite grains from Lafayette are well represented by planar regression rather than linear regression, indicating that its formation age is 1.15 ± 0.34 Ga (2σ) and that a secondary alteration process slightly disturbed its U‐Pb systematics as discussed in the literature regarding Nakhla. The observed REE abundance patterns of the apatites in Lafayette and Yamato‐000749, normalized to CI chondrites, are characterized by a progressive depletion of heavy REEs (HREEs), a negative Eu anomaly, similarity to each other, and consistency with previously reported data for Nakhla. Considering the extensive data from other radiometric systems such as Sm‐Nd, Rb‐Sr, Ar‐Ar, and trace elements, our results suggest that the parent magmas of the nakhlites, including the newly found Y‐000593/000749, are similar and that their crystallization ages are ?1.3 Ga.  相似文献   

3.
Abstract– The oxygen fugacities recorded in the nakhlites Nakhla, Yamato‐000593 (Y‐000593), Lafayette, and NWA998 were studied by applying the Fe,Ti‐oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite–Magnetite–Quartz) buffer (NWA998 = FMQ ? 0.8; Y‐000593 = FMQ ? 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y‐000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ ? 1 to FMQ ? 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)‐enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle ( Brandon et al. 2000 ) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003 ).  相似文献   

4.
Abstract— Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, ?1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered nakhlites. Quantitative textural study of MIL 03346 indicates long (>1 × 101 yr) residence times for the cumulus augite, whereas the skeletal Fe‐Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo43) compared with other nakhlites and compositions of augite cores (Wo38–42En35–40Fs22–28) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian cumulate‐rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed‐system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the nakhlites (Nakhla, Governador Valadares, Lafayette, Yamato‐000593, Northwest Africa (NWA) 817, NWA 998) would include: 1) partial melting and ascent of melt generated from a long‐term LREE depleted mantle source, 2) crystallization of cumulus augite (± olivine, ± magnetite) in a shallow‐level Martian magma chamber, 3) eruption of the crystal‐laden nakhlite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single—or multiple—flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks on Mars with analogous petrogenetic histories to pyroxene‐rich terrestrial lava flows and to komatiites.  相似文献   

5.
Veins containing carbonates, hydrous silicates, and sulfates that occur within and between grains of augite and olivine in the Nakhla meteorite are good evidence for the former presence of liquid water in the Martian crust. Aqueous solutions gained access to grain interiors via narrow fractures, and those fractures within olivine whose walls were oriented close to (001) were preferentially widened by etching along [001]. This orientation selective dissolution may have been due to the presence within olivine of shock‐formed [001](100) and [001]{110} screw dislocations. The duration of etching is likely to have been brief, possibly less than a year, and the solutions responsible were sufficiently cool and reducing that laihunite did not form and Fe liberated from the olivine was not immediately oxidized. The pores within olivine were mineralized in sequence by siderite, nanocrystalline smectite, a Fe‐Mg phyllosilicate, and then gypsum, whereas only the smectite occurs within augite. The nanocrystalline smectite was deposited as submicrometer thick layers on etched vein walls, and solution compositions varied substantially between and sometimes during precipitation of each layer. Together with microcrystalline gypsum the Fe‐Mg phyllosilicate crystallized as water briefly returned to some of the veins following desiccation fracturing of the smectite. These results show that etching of olivine enhanced the porosity and permeability of the nakhlite parent rock and that dissolution and secondary mineralization took place within the same near‐static aqueous system.  相似文献   

6.
Abstract— The Yamato nakhlites, Y‐000593, Y‐000749, and Y‐000802, were recovered in 2000 from the bare icefield around the Yamato mountains in Antarctica, consisting of three independent specimens with black fusion crusts. They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle‐stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late‐stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite‐magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite‐magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill.  相似文献   

7.
Abstract— We petrologically examined the Miller Range (MIL) 03346 nakhlite. The main‐phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36–38Fs24–22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa ≥ 55) and show normal zoning toward ferroan rims (Fa ≤ 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y‐) 000593. Although magnesian olivines of Y‐000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y‐000593.  相似文献   

8.
To better understand volcanism on planetary bodies other than the Earth, the quantification of physical processes is needed. Here, the petrogenesis of the achondrite Martian Yamato (Y) nakhlites (Y 000593, Y 000749, and Y 000802) is reinvestigated via quantitative analysis of augite (high-Ca clinopyroxene) phenocrysts: crystal size distribution (CSD), spatial distribution patterns (SDP), and electron backscatter diffraction (EBSD). Results from CSD and EBSD quantitative data sets show augite to have continuous uninterrupted growth resulting in calculated minimum magma chamber residence times of either 88–117 ± 6 yr or 9–12 yr. All samples exhibit low-intensity S-LS type crystallographic preferred orientation. Directional strain is observed across all samples with intracrystalline misorientation patterns indicative of (100)[001]:(001)[100] (Y 000593 and Y 000802) and {110}<001>or {110}1/2<110> (Y 000749) slip systems. SDP results indicate phenocryst-bearing crystal-clustered rock signatures. Combined findings from this work show that the Yamato nakhlites formed on Mars as individual low-viscosity lava flows or sills. This study shows that through combining these different quantitative techniques over multiple samples, one can more effectively compare and interpret resulting data to gain a more robust, geologically contextualized petrogenetic understanding of the rock suite being studied. The techniques used in this study should be equally applicable to igneous achondrites from other parent bodies.  相似文献   

9.
The nakhlite meteorites are clinopyroxenites that are derived from a ~1300 million year old sill or lava flow on Mars. Most members of the group contain veins of iddingsite whose main component is a fine‐grained and hydrous Fe‐ and Mg‐rich silicate. Siderite is present in the majority of veins, where it straddles or cross‐cuts the Fe‐Mg silicate. This carbonate also contains patches of ferric (oxy)hydroxide. Despite 40 years of investigation, the mineralogy and origins of the Fe‐Mg silicate is poorly understood, as is the paragenesis of the iddingsite veins. Nanometer‐scale analysis of Fe‐Mg silicate in the Nakhla meteorite by electron and X‐ray imaging and spectroscopy reveals that its principal constituents are nanoparticles of opal‐A. This hydrous and amorphous phase precipitated from acidic solutions that had become supersaturated with respect to silica by dissolution of olivine. Each opal‐A nanoparticle is enclosed within a ferrihydrite shell that formed by oxidation of iron that had also been liberated from the olivine. Siderite crystallized subsequently and from solutions that were alkaline and reducing, and replaced both the nanoparticles and olivine. The fluids that formed both the opal‐A/ferrihydrite and the siderite were sourced from one or more reservoirs in contact with the Martian atmosphere. The last event recorded by the veins was alteration of the carbonate to a ferric (oxy)hydroxide that probably took place on Mars, although a terrestrial origin remains possible. These results support findings from orbiter‐ and rover‐based spectroscopy that opaline silica was a common product of aqueous alteration of the Martian crust.  相似文献   

10.
Abstract— We describe the petrologic and trace element characteristics of the Yamato 86029 (Y‐86029) meteorite. Y‐86029 is a breccia consisting of a variety of clasts, and abundant secondary minerals including coarse‐ and fine‐grained phyllosilicates, Fe‐Ni sulfides, carbonates, and magnetite. There are no chondrules, but a few anhydrous olivine‐rich grains are present within a very fine‐grained phyllosilicate‐rich matrix. Analyses of 14 thermally mobile trace elements suggest that Y‐86029 experienced moderate, open‐system thermal metamorphism. Comparison with data for other heated carbonaceous chondrites suggests metamorphic temperatures of 500–600°C for Y‐86029. This is apparent petrographically, in partial dehydration of phyllosilicates to incompletely re‐crystallized olivine. This transformation appears to proceed through ‘intermediate’ highly‐disordered ‘poorly crystalline’ phases consisting of newly formed olivine and residual desiccated phyllosilicate and their mixtures. Periclase is also present as a possible heating product of Mg‐rich carbonate precursors. Y‐86029 shows unusual textures rarely encountered in carbonaceous chondrites. The periclase occurs as unusually large Fe‐rich clasts (300–500 μm). Fine‐grained carbonates with uniform texture are also present as small (10–15 μm in diameter), rounded to sub‐rounded ‘shells’ of ankerite/siderite enclosing magnetite. These carbonates appear to have formed by low temperature aqueous alteration at specific thermal decomposition temperatures consistent with thermodynamic models of carbonate formation. The fine and uniform texture suggests crystallization from a fluid circulating in interconnected spaces throughout entire growth. One isolated aggregate in Y‐86029 also consists of a mosaic of polycrystalline olivine aggregates and sulfide blebs typical of shock‐induced melt re‐crystallization. Except for these unusual textures, the isotopic, petrologic and chemical characteristics of Y‐86029 are quite similar to those of Y‐82162, the only other heated CI‐like chondrite known. They were probably derived from similar asteroids rather than one asteroid, and hence may not necessarily be paired.  相似文献   

11.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

12.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   

13.
Abstract– The nakhlites, a subgroup of eight clinopyroxenites thought to come from a single geological unit at the Martian surface, show melt inclusions in augite and olivine. In contrast to olivine‐hosted melt inclusions, augite‐hosted melt inclusions are not surrounded by fractures, and are thus considered preferential candidates for reconstructing parent liquid compositions. Furthermore, two types of augite‐hosted melt inclusion have been defined and characterized in four different nakhlites (Northwest Africa [NWA] 817, Nakhla, Governador Valadares, and NWA 998): Type‐I isolated inclusions in augite cores that contain euhedral to subhedral augite, Ti‐magnetite, and pigeonite plus silica‐rich glass and a gas bubble; Type‐II microinclusions that form trails crosscutting host augite crystals. Fast‐heating experiments were performed on selected pristine primary augite‐hosted melt inclusions from these four samples. Of these, only data from Nakhla were considered robust for reconstruction of a nakhlite parental magma composition (NPM). Based upon careful petrographic selection and consideration of iron‐magnesium ratios, our data are used to propose an NPM, which is basaltic (49.1 wt% SiO2), of high Ca/Al (1.95), and K2O‐poor (0.32 wt%). Thermodynamic modeling at an oxygen fugacity one log unit below the QFM buffer using the MELTS and PETROLOG programs implies that Mg‐rich olivine was not a liquidus phase for this composition. Our analysis is used to suggest that olivine megacrysts found in the nakhlites are unlikely to have coprecipitated with augite, and thus may have been introduced during or subsequent to accumulation in the magma chamber, possibly from more evolved portions of the same chamber.  相似文献   

14.
Abstract– The nakhlites contain small proportions of Cu‐Fe‐Ni sulfide minerals; we have studied these sulfides in Northwest Africa (NWA) 998, Nakhla, Governador Valadares, and NWA 817 with optical microscopy, scanning electron microscope, and electron microprobe. Modal abundances of magmatic sulfides, as estimated by image analysis on thin section, are uniformly low (0.02 to 0.05 ± 0.03 vol%), i.e., a factor 5 lower than in shergottites. Sulfides occur within the glassy mesostasis, as composite two‐phase Fe‐Ti oxide‐sulfide grains, intimately associated with interstitial grains or locally enclosed in postcumulus melt inclusions (e.g., Governador Valadares) in olivine. They exhibit a uniform low‐Ni monoclinic pyrrhotite composition ± chalcopyrite. There is a gradation of sulfide grain sizes and textures across the nakhlites flow(s): droplets in NWA 817; resorbed blebs in Governador Valadares; more massive, true intercumulus blebs in Nakhla and NWA 998. These nakhlites also show evidence for sulfide weathering. Hot desert finds (e.g., NWA 998 and NWA 817) show a few percent fracture‐filling iron (oxy) hydroxides of likely terrestrial origin. Original sulfides are 50% altered in our NWA 998 section, with iron (oxy) hydroxides at grain boundaries and as complete pseudomorphs. The compositions of unaltered pyrrhotites are homogeneous, close to that of the monoclinic endmember Fe7S8, and are too sulfur‐rich to have been in chemical equilibrium with the late magmatic redox state fixed by the fayalite‐magnetite‐quartz buffer. Therefore, the compositions of the pyrrhotites must have been altered during the later stages of magmatic crystallization, by assimilation of S‐rich regolith and hydrothermal circulation.  相似文献   

15.
Cover          下载免费PDF全文
Phase map of an iddingsite vein in an olivine grain from the Nakhla meteorite made using multiple linear least squares fitting of electron energy loss spectroscopy data (green ‐ olivine, blue ‐ siderite, pink ‐ ferric oxyhydroxide, orange ‐ Fe‐Mg silicate). The detailed structure of the Fe‐Mg silicate is shown in the inset, which is a spectroscopic map of iron (red), magnesium (green) and silicon (blue) showing the nanoscale structure of opal‐A spheres in a Fe‐Mg‐rich matrix. Martin Lee et al. discuss the details in their article on pp. 1362–1377. Image prepared by Ian MacLaren.  相似文献   

16.
We used new analytical and theoretical methods to determine the major and minor element compositions of the primary trapped liquid (PTLs) represented by melt inclusions in olivine and augite in the Martian clinopyroxenite, Nakhla, for comparison with previously proposed compositions for the Nakhla (or nakhlite) parent magma. We particularly focused on obtaining accurate K2O contents, and on testing whether high K2O contents and K2O/Na2O ratios obtained in previous studies of melt inclusions in olivine in Nakhla could have been due to unrepresentative sampling, systematic errors arising from electron microprobe techniques, late alteration of the inclusions, and/or boundary layer effects. Based on analyses of 35 melt inclusions in olivine cores, the PTL in olivine, PTLoliv, contained (by wt) approximately 47% SiO2, 6.3% Al2O3, 9.6% CaO, 1.8% K2O, and 0.9% Na2O, with K2O/Na2O = 2.0. We infer that the high K2O content of PTLoliv is not due to boundary layer effects and represents a real property of the melt from which the host olivine crystallized. This melt was cosaturated with olivine and augite. Its mg# is model‐dependent and is constrained only to be ≥19 (equilibrium Fo = 40). Based on analyses of 91 melt inclusions in augite cores, the PTL in augite, PTLaug, contained (by wt) 53–54% SiO2, 7–8% Al2O3, 0.8–1.1% K2O, and 1.1–1.4% Na2O, with K2O/Na2O = 0.7–0.8. This K2O content and K2O/Na2O ratio are significantly higher than inferred in studies of melt inclusions in augite in Nakhla by experimental rehomogenization. PTLaug was saturated only with augite, and in equilibrium with augite cores of mg# 62. PTLaug represents the Nakhla parent magma, and does not evolve to PTLoliv by fractional crystallization. We therefore conclude that olivine cores in Nakhla (and, by extension, other nakhlites) are xenocrystic. We propose that PTLoliv and PTLaug were generated from the same source region. PTLoliv was generated first and emplaced to form olivine‐rich cumulate rocks. Shortly thereafter, PTLaug was generated and ascended through these olivine‐rich cumulates, incorporating fragments of wallrock that became the xenocrystic olivine cores in Nakhla. The Nakhla (nakhlite) mantle source region was pyroxenitic with some olivine, and could have become enriched in K relative to Na via metasomatism. A high degree of melting of this source produced the silica‐poor, alkali‐rich magma PTLoliv. Further ascension and decompression of the source led to generation of the silica‐rich, relatively alkali‐poor magma PTLaug. Potassium‐rich magmas like those involved in the formation of the nakhlites represent an important part of the diversity of Martian igneous rocks.  相似文献   

17.
Abstract— Here we report the transmission electron microscopy (TEM) observations of the mineral assemblages and textures in shock‐induced melt veins from seven L chondrites of shock stages ranging from S3 to S6. The mineral assemblages combined with phase equilibrium data are used to constrain the crystallization pressures, which can be used to constrain shock pressure in some cases. Thick melt veins in the Tenham L6 chondrite contain majorite and magnesiowüstite in the center, and ringwoodite, akimotoite, vitrified silicate‐perovskite, and majorite in the edge of the vein, indicating crystallization pressure of ?25 GPa. However, very thin melt veins (5–30 μm wide) in Tenham contain glass, olivine, clinopyroxene, and ringwoodite, suggesting crystallization during transient low‐pressure excursions as the shock pressure equilibrated to a continuum level. Melt veins of Umbarger include ringwoodite, akimotoite, and clinopyroxene in the vein matrix, and Fe2SiO4‐spinel and stishovite in SiO2‐FeO‐rich melt, indicating a crystallization pressure of ?18 GPa. The silicate melt veins in Roy contain majorite plus ringwoodite, indicating pressure of ?20 GPa. Melt veins of Ramsdorf and Nakhon Pathon contain olivine and clinoenstatite, indicating pressure of less than 15 GPa. Melt veins of Kunashak and La Lande include albite and olivine, indicating crystallization at less than 2.5 GPa. Based upon the assemblages observed, crystallization of shock veins can occur before, during, or after pressure release. When the assemblage consists of high‐pressure minerals and that assemblage is constant across a larger melt vein or pocket, the crystallization pressure represents the equilibrium shock pressure.  相似文献   

18.
Abstract— The Nakhla meteorite, commonly accepted to have originated from Mars, is a cumulus clinopyroxenite with ~10 vol% of Fe‐rich olivine. Almost all olivine grains in Nakhla contain dark lamellar inclusions (less than 2–3 μm wide). High‐resolution scanning and transmission electron microscopy revealed that the inclusions are complex intergrowths of augite and magnetite. Such a symplectic intergrowth of augite and magnetite in olivine was known in some terrestrial rocks, lunar rocks, and a few meteorites. The inclusion in Nakhla olivine is the first symplectite found in a martian rock. Apparently, the presence of Fe3+ in olivine under an oxidizing condition on Mars caused symplectic exsolution at high temperature (>900 °C) during cooling.  相似文献   

19.
Abstract— 20–25 mg whole rock samples of the nakhlites Lafayette and Nakhla have been analyzed via the 40Ar‐39Ar technique, in part to verify their formation ages, but primarily, in an attempt to determine the timing of aqueous alteration in these martian meteorites. As in previous studies, plateaus in apparent age are observed at about 1300 Ma (1322 ± 10 for Lafayette, 1332 ± 10 and 1323 ± 11 for Nakhla), presumably corresponding to crystallization ages. The plateaus are not entirely flat, perhaps reflecting the effects of recoil during creation of 39Ar in the nuclear irradiation. The first 5–20% of the K‐derived Ar released from all three samples give apparent ages <1300 Ma. Coupled with the fact that chronometric isotopic studies of nakhlites typically show some disturbance, we believe the low temperature pattern represents more recent (than 1300 Ma) formation of martian aqueous alteration products such as iddingsite. No low temperature plateaus are observed. This is consistent with petrographic evidence for multiple formation events, although the lack of low temperature plateaus is far from conclusive. On the other hand, if there was a single time of alteration, we believe that it will be difficult, if not impossible, to determine it using the K‐Ar system.  相似文献   

20.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号