首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We show how future measurements of the Sunyaev–Zel'dovich effect (SZE) can be used to constrain the cosmological parameters. We combine the SZ information expected from the Planck full-sky survey, N ( S ), where no redshift information is included, with the N ( z ) obtained from an optically identified SZ-selected survey covering less than 1 per cent of the sky. We demonstrate how with a small subsample (≈300 clusters) of the whole SZ catalogue observed optically it is possible to reduce the degeneracy among the cosmological parameters drastically. We have studied the requirements for performing the optical follow-up and we show the feasibility of such a project. Finally, we have compared the cluster expectations for Planck with those expected for Newton–XMM during their lifetimes. It is shown that, owing to its larger sky coverage, Planck will detect a factor of ∼5 times more clusters than Newton–XMM and also provide a larger redshift coverage.  相似文献   

3.
4.
With detections of the Sunyaev–Zel'dovich (SZ) effect induced by galaxy clusters becoming routine, it is crucial to establish accurate theoretical predictions. We use a hydrodynamical N -body code to generate simulated maps, of size 1 deg2, of the thermal SZ effect. This is done for three different cosmologies: the currently favoured low-density model with a cosmological constant, a critical-density model and a low-density open model. We stack simulation boxes corresponding to different redshifts in order to include contributions to the Compton y -parameter out to the highest necessary redshifts. Our main results are as follows.
(i) The mean y -distortion is around 4×10−6 for low-density cosmologies, and 1×10−6 for critical density. These are below current limits, but not by a wide margin in the former case.
(ii) In low-density cosmologies, the mean y -distortion is contributed across a broad range of redshifts, with the bulk coming from z ≲2 and a tail out to z ∼5. For critical-density models, most of the contribution comes from z <1.
(iii) The number of SZ sources above a given y depends strongly on instrument resolution. For a 1-arcmin beam, there are around 0.1 sources per deg2 with y >10−5 in a critical-density Universe, and around 8 such sources per deg2 in low-density models. Low-density models with and without a cosmological constant give very similar results.
(iv) We estimate that the Planck satellite will be able to see of order 25 000 SZ sources if the Universe has a low density, or around 10 000 if it has critical density.  相似文献   

5.
6.
We examine the biases induced on cosmological parameters when the presence of secondary anisotropies is not taken into account in cosmic microwave background analyses. We first develop an exact analytical expression for computing the biases on parameters when any additive signal is neglected in the analysis. We then apply it in the context of the forthcoming Planck experiment. For illustration, we investigate the effect of the sole residual thermal Sunyaev–Zel'dovich signal that remains after cluster extraction. We find, in particular, that analyses neglecting the presence of this contribution introduce on the cosmological parameters n s and τ biases, at least ∼6.5 and 2.9 times their 1σ confidence intervals. The Ωb parameter is also biased to a lesser extent.  相似文献   

7.
We use hydrodynamical N -body simulations to study the kinetic Sunyaev–Zel'dovich effect. We construct sets of maps, one square degree in size, in three different cosmological models. We confirm earlier calculations that on the scales studied the kinetic effect is much smaller than the thermal (except close to the thermal null point), with an rms dispersion smaller by about a factor of 5 in the Rayleigh–Jeans region. We study the redshift dependence of the rms distortion and the pixel distribution at the present epoch. We compute the angular power spectra of the maps, including their redshift dependence, and compare them with the thermal Sunyaev–Zel'dovich effect and with the expected cosmic microwave background anisotropy spectrum as well as with determinations by other authors. We correlate the kinetic effect with the thermal effect both pixel-by-pixel and for identified thermal sources in the maps to assess the extent to which the kinetic effect is enhanced in locations of strong thermal signal.  相似文献   

8.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   

9.
10.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

11.
12.
13.
14.
15.
In the context of cold dark matter (CDM) cosmological models, we have simulated images of the brightness temperature fluctuations in the cosmic microwave background (CMB) sky owing to the Sunyaev–Zel'dovich (S–Z) effect in a cosmological distribution of clusters. We compare the image statistics with recent ATCA limits on arcmin-scale CMB anisotropy. The S–Z effect produces a generically non-Gaussian field and we compute the variance in the simulated temperature-anisotropy images, after convolution with the ATCA beam pattern, for different cosmological models. All the models are normalized to the 4-yr COBE data. We find an increase in the simulated-sky temperature variance with increase in the cosmological density parameter Ω0. A comparison with the upper limits on the sky variance set by the ATCA appears to rule out our closed-universe model: low-Ω0 open-universe models are preferred. The result is independent of any present day observations of σ 8.  相似文献   

16.
17.
The intensity of the cosmic microwave background radiation in the fields of clusters of galaxies is modified by inverse Compton scattering in the hot intracluster gas — the Sunyaev–Zel'dovich (SZ) effect. The effect is expected to be most pronounced at a frequency of about 350 GHz (a wavelength of about 800 μm), and has been detected in the centimetre and millimetre wavebands. In the millimetre/submillimetre waveband, the gravitationally lensed images of distant dusty star-forming galaxies in the background of the cluster are predicted to dominate the appearance of clusters on scales of several arcsec, and could confuse observations of the SZ effect at frequencies greater than about 200 GHz (wavelengths shorter than about 1.5 mm). Recent observations by Smail, Ivison &38; Blain confirm that a significant population of confusing sources is present in this waveband. Previous estimates of source confusion in observations of the millimetre/submillimetre-wave SZ effect did not include the effects of lensing by the cluster, and so the accuracy of such measurements could be lower than expected. Source subtraction may be required in order to measure the SZ effect accurately, and a careful analysis of the results of an ensemble of SZ measurements could be used to impose limits to the form of evolution of distant dusty star-forming galaxies.  相似文献   

18.
Quasar-driven winds are currently the best candidates for accounting for the pre-heating of the intergalactic medium in clusters. Such winds, occurring during early phases of the evolution of spheroidal galaxies, shock-heat the interstellar gas, thus inducing a detectable Sunyaev–Zel'dovich effect. We estimate the amplitude and the angular scale of such an effect as well as its counts as a function of the Comptonization parameter y . The contamination arising from radio emission by the quasar itself is also discussed. The corresponding mean Compton distortion of the cosmic microwave background spectrum is found to be well below the COBE /FIRAS upper limit.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号