首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ocean surface currents can be estimated, over a large coastal area, by utilizing the backscatter of high frequency (HF) radar waves from ocean gravity waves. Although the overall backscatter mechanism is complicated, the surface current information is contained within the spectral characteristics of two dominant Bragg components. The accuracy of the current estimate, following the usual FFT-based spectral estimate, is limited by the frequency resolution of the FFT and the time-varying characteristics of the Bragg components. This paper describes a high resolution parametric estimation of the ocean currents based on a recently proposed technique for analyzing time-varying signals. This technique, together with a time-domain ocean clutter model, allows all the Bragg signal information to be extracted from the two dominant eigenvalues and eigenvectors of a matrix constructed from the radar data. Using signals from an operational coastal surveillance radar, current estimates made using this technique are compared with those estimated by the conventional FFT-based method  相似文献   

2.
Experimental results from an array of moored current meters and an HF ocean surface radar support the idea that line broadening on the radar spectra is caused by the velocity distribution within the radar target cell. The experiment was done in the wake of a small island where the velocity variations were severe. An estimate is made of the line broadening which can be expected. In a turbulent flow with dissipation rate of the orderepsilon sim 10^{-10}m^{2}s^{-3}and target cell size 1 3000 m, the line broadening isDeltaf sim 10^{-3}Hz. This would be resolved with a radar time series ofsim 20min and indicates that the HF ocean surface radar technique has potential in the observation of surface velocity distributions.  相似文献   

3.
An analysis previously developed for rough surface scattering with narrow-beam reception is extended to wide-beam or omnidirectional reception. The source is considered to be a pulsed electric dipole. The analysis includes multipathing effects on the received signal. The results are used to develop a model for the backscattered radar cross section of the ocean surface, up to a second-order approximation.  相似文献   

4.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

5.
A newly developed three-dimensional Doppler current meter is described and the results of preliminary field experiments are presented where simultaneous measurements of surface elevation and water velocity associated with wave orbital motion were made. The phase difference between the surface elevation and the vertical velocity measured at 1.0 and 0.45 meters below the mean water level is found to be approximately 90, in accord with the theory for surface waves of infinitesimally small amplitudes. The spectral (frequency) density distribution for velocity is also found to agree with that we would expect from the linear theory for the observed frequency distribution of surface elevation. However, the amplitude of velocity is consistently smaller (about 10 %) than that we would expect. This reduction of amplitude is more pronounced in cases where waves are high and the water depth is shallow.  相似文献   

6.
A simple operationally oriented model of surface wind-driven currents is presented in which Lagrangian surface drift is assumed to be composed of a linear combination of a wave-induced Stokes drift plus a wind-driven Ekman drift. Using this approach, Stokes drift accounts for as much as half the total surface current magnitude. The Lagrangian current is predicted to be about 3.5% of the 10 m wind magnitude directed in the sense of an Ekman spiral about a 20° deviation angle. For comparison to this model, a second model is proposed that accounts for the interaction of Stokes current and Coriolis force. An inference drawn from this model is that there is only weak coupling between Coriolis force and Stokes drift. Such a conclusion, if correct, leads one to focus attention on the Lagrangian model for operationally oriented current estimates. Results of the Lagrangian model agree with observations of investigators for currents at the air-sea interface and may have application in the movement f oil slicks or surface drifters at sea under fetch or duration limited sea states.  相似文献   

7.
The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.  相似文献   

8.
The application of a 30-MHz narrow-beam ground-wave ocean radar to the observation of wind directions is described. It is found that thecos^{s} (theta/2)model for wind-wave directions does not apply in a specific case of shallow water where swell waves are behaving nonlinearly. To experimentally extract unambiguous wind directions from this model requires sampling three different beam angles simultaneously. In practice some time and space stationarity is assumed. Detailed analysis in time and space reveals structure in the transition of the cold front from sea to land which, although unexpected, agrees with coastline observations where they are available. The nature of the structure is only briefly discussed. The response of thelambda = 5-m wind waves to the frontal change was two orders of magnitude faster than time constants for similar events previously modeled using pitch-and-roll buoy data. This discrepancy needs to be reconciled before lower frequency radars can be used without ground truth for wind-direction changes.  相似文献   

9.
Since 1984 the OSCR HF Radar system has been used in over 50 deployments to measure near-shore surface currents for both scientific and engineering applications. The enhanced scope, resolution and accuracy of these measurements have yielded new insights into the tidal, wind and density driven dynamics of the near-shore zone.Tidal current ellipses obtained from these radar measurements have been shown to be in good aggrement with values calculated by numerical models both for the predominant constituents and also for higher harmonics. Coherent patterns of wind-forced currents ahve been determined with strong evidence of a “slab-like” surface response. In one deployment, with offshore winds blowing over relatively deep water, this “slab” rotated clockwise at near-inertial frequency. Strong (up to 20cm s−1), persistent surface residual currents are commonly observed, these are almost certainly generated by (small) horizontal density gradients. These observed surface residuals provide ideal data for rigorous testing of 3-D numerical models.With a threatened rise in sea level, HF Radar is well-suited for observing the expected changes in the dynamics of near-shore regions. Continuing development of these radar systems offers exciting prospects of remote sensing of both surface waves and currents. Future applications may extend beyond the near-shore region to measurements along the shelf-edge, in oceanic gyres and for “beach-processes”.  相似文献   

10.
利用机载GNSS反射信号反演海面风速的研究   总被引:2,自引:0,他引:2  
王迎强  严卫  符养  李萍 《海洋学报》2008,30(6):51-59
全球卫星导航定位系统的反射信号(GNSS-R)遥感技术作为一种新型的、低成本的、高机动性的海面微波遥感测风技术,与其他测风手段优势互补,可以增加测风手段的多样性,弥补局部测风手段不足的状况。研究了接收机在机载高度时,GPS反射信号功率理论模型四部分函数的性质,在此基础之上,数值模拟了机载高度下理论相关功率波形,基于海面风速对波形峰值与后沿的影响,提出了一种能够兼顾所有理论波形信息的二维插值风速反演方法。利用该方法,结合实测机载数据对海面风速进行反演,反演的风速均值与附近测站风速均值相差为1.4 m/s,与浮标数据相一致。  相似文献   

11.
Area averaged mixing is inferred from the difference between cross-isopycnal advection and air-sea forcing, using a density budget in isopycnal layers. The results suggest that mixing is weak (indistinguishable from zero) in the thermocline in qualitative agreement with local and regional measurements. Mixing increases in warmer density classes, but becomes indeterminate at low densities, where climatological flux errors are largest. At high density, mixing reappears owing to the heat flux required to balance the formation of dense water and reflects mixing with intermediate and bottom water.  相似文献   

12.
Though ubiquitous in the global oceans, double diffusive mixing has been largely ignored or poorly represented in the models of turbulent mixing in the ocean and in 3-D ocean models, until recently. Salt fingers occur in the interior of many marginal seas and ocean basins, the Tyrrhenian Sea and the subtropical Atlantic being two examples. Diffusive convection type of double diffusion occurs in the upper layers of many sub-polar seas and polar oceans due to cold melt water from sea ice. Consequently, it is important to be able to properly parameterize double diffusive mixing in basin scale and global ocean models, so that the water mass structure in the interior of the ocean can be properly simulated. This note describes a model for double diffusive mixing in the presence of background shear, based on Mellor–Yamada type second moment closure, more specifically Kantha, 2003, Kantha and Clayson, 2004 second moment closure models of resulting turbulence, following Canuto et al. (2008a) but employing a different strategy for modeling the pertinent terms in the second moment equations. The resulting model is suitable for inclusion in ocean general circulation models.  相似文献   

13.
An estimate of the coverage efficiency of a high-frequency (HF) skywave (ionospheric) radar for mapping ocean wave height and surface wind direction at ranges between 1000 and 3000 km was made for two different but common operational ocean-monitoring applications. In the first test, three days in duration, wind direction and wave height were mapped over the entire coverage area. In the second test, four days in duration, wind direction was mapped over the entire coverage area and wave height was mapped at preselected small regions within the coverage area. On-line quality assessment and real-time ionospheric diagnostics helped select space-time-frequency windows with low ionospheric distortion. Wind direction over the 4 000 000-km2coverage area was mapped every day with the Wide Aperture Research Facility (WARF) skywave radar in about 1 h. For large-area wave-height mapping, 6 h was allowed, and for the coverage of a smaller grid, 3 h was allowed. Within these time windows, high-confidence wave-height measurements were obtained at 59 percent of the locations attempted, using on-line processing for both tests. When postexperiment processing was included, the coverage efficiency increased to 74 percent. Greater efficiencies would be possible operationally with more experience and more sophisticated radars. Eliminating the First day's results from the statistics shows the effects of increased operating experience. Then the overall on-line efficiency increases to 69 percent, and the off-line increases to 82 percent for the six days of the two tests.  相似文献   

14.
A Wind stress–Current Coupled System (WCCS) consisting of the HYbrid Coordinate Ocean Model (HYCOM) and an improved wind stress algorithm based on Donelan et al. [Donelan, W.M., Drennan, Katsaros, K.B., 1997. The air–sea momentum flux in mixed wind sea and swell conditions. J. Phys. Oceanogr. 27, 2087–2099] is developed by using the Earth System Modeling Framework (ESMF). The WCCS is applied to the global ocean to study the interactions between the wind stress and the ocean surface currents. In this study, the ocean surface current velocity is taken into consideration in the wind stress calculation and air–sea heat flux calculation. The wind stress that contains the effect of ocean surface current velocity will be used to force the HYCOM. The results indicate that the ocean surface velocity exerts an important influence on the wind stress, which, in turn, significantly affects the global ocean surface currents, air–sea heat fluxes, and the thickness of ocean surface boundary layer. Comparison with the TOGA TAO buoy data, the sea surface temperature from the wind–current coupled simulation showed noticeable improvement over the stand-alone HYCOM simulation.  相似文献   

15.
An algorithm that would extend the capabilities of a four-element square array known as the Coastal Oceans Dynamics Applications Radar (CODAR) to include the yielding of directional wave-height spectra from backscattered radiation is addressed. General expressions for the first- and second-order broadbeam radar cross-sections of the ocean surface are applied to the array. A Fourier-basis-function approach allows the broadbeam cross-sections to be written as a system of integral equations. The second-order radar return involves a double integral whose integrand contains nonlinear combinations of the unknowns, namely, the Fourier coefficients of the ocean wave directional spectrum. The first-order portion of the radar spectrum is used to linearize this integral. The matrix system then formulated is solved using a singular value decomposition (SVD) approach, and the resulting ocean spectral coefficients are used to give the directional spectrum. Test results for the algorithm are reported and discussed  相似文献   

16.
Super-ensemble techniques: Application to surface drift prediction   总被引:3,自引:0,他引:3  
The prediction of surface drift of floating objects is an important task, with applications such as marine transport, pollutant dispersion, and search-and-rescue activities. But forecasting even the drift of surface waters is very challenging, because it depends on complex interactions of currents driven by the wind, the wave field and the general prevailing circulation. Furthermore, although each of those can be forecasted by deterministic models, the latter all suffer from limitations, resulting in imperfect predictions. In the present study, we try and predict the drift of two buoys launched during the DART06 (Dynamics of the Adriatic sea in Real-Time 2006) and MREA07 (Maritime Rapid Environmental Assessment 2007) sea trials, using the so-called hyper-ensemble technique: different models are combined in order to minimize departure from independent observations during a training period; the obtained combination is then used in forecasting mode. We review and try out different hyper-ensemble techniques, such as the simple ensemble mean, least-squares weighted linear combinations, and techniques based on data assimilation, which dynamically update the model’s weights in the combination when new observations become available. We show that the latter methods alleviate the need of fixing the training length a priori, as older information is automatically discarded.When the forecast period is relatively short (12 h), the discussed methods lead to much smaller forecasting errors compared with individual models (at least three times smaller), with the dynamic methods leading to the best results. When many models are available, errors can be further reduced by removing colinearities between them by performing a principal component analysis. At the same time, this reduces the amount of weights to be determined.In complex environments when meso- and smaller scale eddy activity is strong, such as the Ligurian Sea, the skill of individual models may vary over time periods smaller than the forecasting period (e.g. when the latter is 36 h). In these cases, a simpler method such as a fixed linear combination or a simple ensemble mean may lead to the smallest forecast errors. In environments where surface currents have strong mean-kinetic energies (e.g. the Western Adriatic Current), dynamic methods can be particularly successful in predicting the drift of surface waters. In any case, the dynamic hyper-ensemble methods allow to estimate a characteristic time during which the model weights are more or less stable, which allows predicting how long the obtained combination will be valid in forecasting mode, and hence to choose which hyper-ensemble method one should use.  相似文献   

17.
利用海浪模式WWIII(Wave Watch III)2008年的模拟结果对海面Stokes漂流、Stokes输运、Stokes深度以及全球Langmuir数的年平均分布特征和季节平均分布特征分别进行了详细的研究与分析。结果表明,海面Stokes漂流和Stokes输运均呈现高纬度偏大的特征,以南极绕极流海域最为突出。全球大部分海域Stokes漂流影响深度在20 m以内,呈现大洋东部偏大,西部偏小的分布特征。全球大部分海域的混合作用是剪切不稳定性和Langmuir湍效应并存的状态,甚至有些海域是以Langmuir湍效应为主。因此,在进行大尺度的海洋数值模拟时,应该考虑波浪导致的混合效应。  相似文献   

18.
A new method for the extraction of swell-wave parameters from high-frequency (HF) radar spectra is presented. The method of extraction of the parameters, period, direction, and height, relies on a frequency-modulation approach that describes the hydrodynamic interaction of the swell waves with the resonant, shorter, Bragg waves. The analysis process minimizes the electromagnetic second-order interaction and a simulation model was used to validate the approach. This simplified method provides a fast means of examining swell conditions over large areas of the ocean surface. Data are acquired using a pair of coastal ocean surface radar (COSRAD) systems deployed at Tweed Heads, Qld., Australia. The radar covers a sweep (approximately 60deg) every 30 min with spatial resolution of the order of 3 km. A sample set of data from this deployment is used in a case study to show the extraction of swell direction and amplitude using these methods. The results support the use of the COSRAD HF radar for mapping swell in the near-shore zone  相似文献   

19.
Wuhan University's ocean state measuring and analyzing radar (OSMAR2000), working at around 7.5 MHz in the low region of the HF band with a 120-m-long linear receiving antenna array, can measure ocean surface current at ranges of up to 200 km. An ocean surface current algorithm based on direction finding (DF) using the multiple signal classification (MUSIC) method is developed for the OSMAR2000 radar. This paper describes the OSMAR2000 ocean surface current algorithm based on MUSIC and the validation experiments in the East China Sea. The results of the ocean surface current measurements demonstrate that the OSMAR2000 ocean surface current algorithm based on MUSIC is feasible for the long range of ocean surface current mapping with a sufficient bearing resolution.  相似文献   

20.
《Ocean Modelling》2003,5(4):297-323
An algorithm is presented for solving the one-dimensional diffusion equation for density, written in terms of density (or a like surrogate) as the independent variable. The algorithm maintains nonnegative layer thicknesses, the premise of the transformation to density as the independent coordinate, under certain restrictions. Near-zero thickness layers can be maintained at the boundaries to accommodate future inflation in response to heating from the boundary. Layers can shrink to near-zero thickness in response to cooling from the boundary. A slight modification of the algorithm permits layers to have diffusion coefficients which differ by orders of magnitude. This provides a natural framework for a surface mixed layer in an isopycnal model, in which the mixed layer is distinguished as a zone of very high turbulent diffusivity overlying an ocean interior of much smaller turbulent diffusivity. The “mixed layer” may be an aggregation of several isopycnal layers rather than just one. A substantial jump in density at the mixed layer base can be represented by several near-zero thickness isopycnal layers. The specification of the thickness of the mixing zone, i.e., the mixed layer depth, is external to the algorithm. An illustration is given using a Kraus–Turner-type specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号