首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

2.
3.
Sendai Bay is located on the Pacific coast of northern Japan and suffered serious damage following the 2011 off the Pacific coast of Tohoku earthquake and tsunami in March 2011. To assess the impact on the marine ecosystem, information was needed on the phytoplankton communities and their seasonal variation. However, such information was limited. Therefore, an intensive monitoring of the phytoplankton was carried out from March 2012 to April 2014. Seasonal variation of the phytoplankton community was similar at coastal and offshore stations. Total phytoplankton biomass, based on Chl a concentration, peaked in spring and then decreased to a minimum in summer, before gradually increasing during early winter and peaking again in the following spring. This seasonal pattern was consistent with previous studies conducted before the earthquake and tsunami. Also, size structure of the phytoplankton community and its four main groups was estimated from the size-fractioned samples of Chl a. Our results also showed that the spring bloom consisted of large diatoms, with their growth ceasing due to nitrogen depletion. The bloom was followed by a summer period where cyanobacteria and picoeukaryote became dominant, with high cell densities in spite of low nutrient concentrations. In addition, sporadic environmental changes, such as those following typhoons, were observed. These resulted in large increases/decreases in individual phytoplankton groups.  相似文献   

4.
5.
6.
7.
8.
Demersal fish communities were studied on the lower continental shelf and the upper continental slope along the Pacific coast of northeastern Japan. Species composition, number and weight of each species were examined based on otter trawl samples at 45 stations. Mean density and biomass of demersal fishes were 131 ha–1 and 21 kg ha–1, respectively. The ten most abundant species comprised of about 95% of total number and weight of overall catch indicating simple species composition. Gadiform fishesTheragra chalcogramma, Gadus macrocephalus andPhysiculus maximowiczi were the most important species by number, weight and frequency of occurrences, and three main community types represented by the three key species were recognized.Theragra-dominant community showed higher density and biomass, and lower diversity thanPhysiculus-dominant community did. Species diversity of demersal fish community was negatively correlated to density and biomass. Density and biomass of demersal fish community were high on the uppermost slope, and the high abundance resulted from low-diversity communities dominated byT. chalcogramma andG. macrocephalus.  相似文献   

9.
Mesozooplankton community structure and environmental factors were monitored monthly at a fixed station off Tongyeong, southeastern coast of Korea, from 2011 to 2014 to better understand the variability of the mesozooplankton community in relation to changes in the marine environment. Total mesozooplankton density varied from 747 to 8,945 inds. m-3 with peaks in summer. The surface water temperature (r = 0.338, p < 0.05) and chlorophyll-a (Chl-a) concentration (r = 0.505, p < 0.001) were parts of the factors that may have induced the mesozooplankton peaks in summer. Copepods accounted for 71% of total mesozooplankton. Total copepod density, particularly cyclopoid copepods, increased during the study period. Cumulative sum plots and anomalies of the cyclopoid copepod density revealed a change of the cyclopoid density from negative to positive in June 2013. A positive relationship between cyclopoid copepods and the Chl-a concentration (r = 0.327, p < 0.05) appeared to be one of the reasons for the increase in cyclopoids. Dominant mesozooplankton species such as Paracalanus parvus s.l., Oikopleura spp., Evadne tergestina, Cirripedia larvae, Corycaeus affinis, Calanus sinicus, and Oithona similis accounted for 60% of total mesozooplankton density. Based on cluster analysis of the mesozooplankton community by year, the seasonal distinction among groups was different in 2014 compared to other years. P. parvus s.l. and its copepodites contributed most in all groups in all four years. Our results suggest that the high Chl-a concentration since 2013 may have caused the changes in mesozooplankton community structure in the study area.  相似文献   

10.
11.
12.
《Journal of Sea Research》2007,57(2-3):171-179
We examined the relationship between body size and maturation in male Japanese flounder Paralichthys olivaceus, and whether spatial variation in the occurrence of mature fish between southern (Fukushima and Miyagi prefectures, 38° N) and northern (Aomori Prefecture, 41° N) waters could be explained by variation in growth rates and somatic body condition. Male flounder in southern and northern waters matured sexually at two years of age; however, the probability of 2-y-old males being mature differed between the two waters. In southern waters, almost all 2-y-old males had mature testes during the spawning season (May–September), whereas the majority of 2-y-old males in northern waters remained immature during the same period. Males in southern waters had grown faster than those in northern waters by summer, two years after birth, but the length range of males in the two regions largely overlapped during the spawning season. The somatic condition of 2-y-old males in June was significantly higher in southern waters than in northern waters, but there was no significant difference in condition between immature and mature specimens in each region. The length-growth increments of 2-y-old males in southern waters during the growing season, just after the spawning season, were similar to those in northern waters. These discrepancies in fish between northern and southern waters did not appear to be explained by the theory of growth and energy allocation strategies. Our findings show that life-history traits of male Japanese flounder may vary on a small geographical scale off the Pacific coast of northern Japan.  相似文献   

13.
Ongoing geological research into processes operating on the nearshore continental shelf and beyond is vital to our understanding of modern tsunami-generated sediment transport and deposition. This paper investigates the southern part of Sendai Bay, Japan, by means of high-resolution seismic surveys, vibracoring, bathymetric data assimilation, and radioisotope analysis of a core. For the first time, it was possible to identify an erosional surface in the shallow subsurface, formed by both seafloor erosion and associated offshore-directed sediment transport caused by the 2011 Tohoku-oki tsunami. The area of erosion and deposition extends at least 1,100 m offshore from the shoreline down to water depths of 16.7 m. The tsunami-generated sedimentological signature reaches up to 1.2 m below the present seafloor, whereas bathymetric changes due to storm-related reworking over a period of 3 years following the tsunami event have been limited to the upper ~0.3 m, despite the fact that the study area is located on an open shelf facing the Pacific Ocean. Tsunami-generated erosion surfaces may thus be preserved for extended periods of time, and may even enter the rock record, because the depth of tsunami erosion can exceed the depth of storm erosion. This finding is also important for interpretation of modern submarine strata, since erosion surfaces in shallow (depths less than ~1 m) seismic records from open coast shelves have generally been interpreted as storm-generated surfaces or transgressive ravinement surfaces.  相似文献   

14.
Seasonal change in the meso-sized copepod community structure in the central part of Tokyo Bay was investigated from January 2006 to December 2008. Three seasonal community groups were detected, and seasonal shifts of these communities are explained by life history characteristics of indicator species and seasonal changes in the hydrographical environment. In the winter-spring community, Acartia omorii and Centropages abdominalis dominate because of high growth rates at low temperature. A shift to the early summer community is caused by a diapause of Ce. abdominalis as resting eggs and an increase in the growth and egg-production rate of Pseudodiaptomus marinus at high temperature. A shift to the summer-fall community is caused by a diapause of A. omorii at hypoxic and high temperature conditions and an increase of Temora turbinata, Paracalanus parvus and other oceanic species by an enhancement of the estuary circulation. Then, the community returns to a winter-spring one by the recovery of A. omorii and Ce. abdominalis with low temperatures and oxygenation of bottom water and by the disappearance of oceanic warm-water species at low temperature. Seasonal community shifts occurred almost regularly, but the shift from a winter-spring community to an early summer one occurred 1 month early in 2007 when the water temperature was warmer than in other years.  相似文献   

15.
The results of a preliminary analysis of the source zone of the 2011 Tohoku earthquake (M w = 9.1) near the east coast of Honshu, Japan, are considered. We traced the seismic history of the release of the cumulative scalar seismic moment for the last 110 years and temporal variations in the ordering index for the last 35 years. These parameters are important characteristics of a seismotectonic deformation process. The foreshock activation stage and the initial phase of the aftershock process are studied based on these characteristics.  相似文献   

16.
The temperature and salinity data obtained by the Iwate Fisheries Technology Center for the 25-year period from 1971 to 1995 were analyzed to clarify the seasonal variations in the sea off Sanriku, Japan. The variations of three typical waters found in this region, the Tsugaru Current water, the Oyashio water, and the Kuroshio water are discussed in terms, of a T-S scatter diagram referring to the water mass classification proposed by Hanawa and Mitsudera (1986). The mean temperature and salinity fields averaged for each month show clear seasonal variation. Distributions of the Tsugaru Current water and the Oyashio water can barely be distinguished in the fields deeper than 200 m since the Tsugaru Current has a shallow structure; however, the fields at 100 m depth indicate remarkable seasonal variation in the area of the Tsugaru Current. At 100 m depth, the temperature and salinity fronts between the Tsugaru Current water and the Oyashio water gradually disappear in January through April, appear again in May, then become clearest in September. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
2011~2012年度大亚湾海域浮游植物群落的季节变化   总被引:1,自引:0,他引:1  
于2011年12月至2012年11月采集了大亚湾海域9个站位表层水样, 对大亚湾海域的浮游植物群落结构进行了周年调查。本次调查共鉴定出浮游植物93种, 其中硅藻门40属55种, 甲藻14属33种。秋季浮游植物种类较为丰富, 春季和夏季较低。浮游植物细胞密度为41~396个/mL, 年平均值为72.5个/mL。浮游植物细胞密度夏季较高, 春季较低。硅藻是浮游植物优势类群, 年均占浮游植物总细胞密度的83.6%, 优势硅藻主要有拟菱形藻(Pseudo-nitzschia spp.)、丹麦细柱藻(Leptocylindrus danicus)、中肋骨条藻(Skeletonema costatum)等。甲藻细胞密度一般较低, 各季节甲藻的百分比含量为1.5%~32.6%, 春季血红哈卡藻(Akashiwo sanguinea)大量出现, 最大细胞密度高达82.3 个/mL。浮游植物种类多样性指数(H′)和均匀度(J)在冬季和秋季较高, 夏季较低; 远岸站点较高, 近岸站点较低。研究结果说明虽然大亚湾浮游植物群落结构仍以硅藻占据优势, 但甲藻种类与数量及百分比具有明显上升的趋势, 同时近岸海域的富营养化导致了浮游植物种类多样性的下降。  相似文献   

18.
The tsunami caused by the Great East Japan Earthquake on 11 March 2011 greatly influenced the coastal benthic environment on the northern Pacific coast of Japan. We used the direct count method to investigate changes in the abundance and distribution of Alexandrium (Alexandrium tamarense and Alexandrium catenella) cysts before and after the tsunami in Sendai Bay. Densities of Alexandrium cysts in sediments collected in summer 2011 ranged from 0 to 8,190 cysts cm?3. In the western part of the bay, the density increased greatly after the tsunami, the highest density being approximately 10 times the density recorded in 2005. Molecular identification of single cysts with multiplex polymerase chain reaction (PCR) showed that Alexandrium tamarense dominated the cyst population in the southwestern part of the bay in 2011. Furthermore, accumulation of cysts on the surface sediment after disturbance of the sediment was confirmed by a laboratory experiment. The main factor causing the drastic changes in abundance and distribution of Alexandrium cysts after the earthquake was considered to be vertical and horizontal redistribution of the cysts in sediments after the tsunami.  相似文献   

19.
2011年4月至2012年1月对硇洲岛潮间带大型海藻进行了周年的季节调查, 结果表明, 调查海域大型海藻共有64种。其中褐藻门15种, 占总种类数的23.44%; 红藻门28种, 占总种类数的43.75%; 绿藻门20种, 占总种类数的31.25%; 蓝藻门1种, 占总种类数的1.56%。其种类数春季最多, 共43种; 夏季24种; 秋季29种; 冬季31种。有9个物种为4个季节共有种, 有14个物种为3个季节共有种。各季节间共有种类数为12~26种, 季节间种类更替率为0.42~0.78, 春夏季种类更替率最高, 秋冬季种类更替率最低。优势种共有13种, 仅拟鸡毛菜Pterocladiella capillacea为全年优势种, 而半叶马尾藻Sargassum hemiphyllum和小珊瑚藻Corallina pilulifera为3个季节共有优势种。调查海域大型海藻生物量季节变化明显, 平均生物量春季最高, 冬季次之, 夏季最低。不同物种其垂直分带明显, 从高潮区往低潮区种类数不断增多; 生物量也是从高潮区往低潮区逐渐增大。物种多样性指数变化范围为0.03~2.33, 年均值为1.10; 均匀度变化范围为0.01~0.70, 年均值为0.36; 种类丰富度指数变化范围为0.15~1.65, 年均值为0.72; 辛普森优势度指数变化范围为0.01~0.78, 年均值为0.39。各大型海藻含水率变化范围在51.92%~97.52%, 平均值为85.21%; 总有机碳含量变化范围在4.34%~42.06%, 平均为27.99%。相关性分析发现, 调查海域大型海藻生物量与无机氮(DIN)呈显著负相关, 相关系数为0.49(P<0.05), 与其他环境因子的相关性不明显。在大型海藻生长旺盛的冬春季, 海水中的无机氮(DIN)含量最低, 与其他自然海域冬季营养盐积累规律显著不同。  相似文献   

20.
The spatial distribution, abundance, and assemblage structure of macrozoobenthos were examined at 45 stations in a brackish lagoon (Idoura Lagoon, Japan) to examine the animal–environmental relations in estuarine soft-bottom habitats. We found a total of 23 taxa; the polychaetes Heteromastus sp., Hediste spp., and Prionospio japonica and the isopod Cyathura muromiensis numerically dominated the community. Cluster analysis and one-way analysis of similarity (ANOSIM) identified seven groups of stations that had significantly different macrozoobenthic communities; these were subsequently consolidated into five habitat groups according to their association with environmental characteristics. Canonical correspondence analysis (CCA) showed that salinity, silt-clay content, and the oxidation–reduction potential (ORP) of the sediment strongly affected the macrozoobenthos distribution pattern in the lagoon, whereas other factors (e.g., relative elevation of the habitat and sediment organic content) had much weaker effects. Similarity percentages (SIMPER) procedures indicated that the polychaete Notomastus sp. and the bivalve Macoma contabulata were specific to habitats with low salinity and reduced mud, whereas the bivalve Nuttallia olivacea was specific to sandy bottoms. Heteromastus sp. and Hediste spp. achieved their highest densities in rather oxidized sediments. The acid-volatile sulfide (AVS) content in the sediment was suggested as another possible factor affecting macrozoobenthic density. Our results clearly demonstrate that macrozoobenthic assemblages in estuarine soft-bottoms have high spatial heterogeneity on a small scale (e.g., hundreds of meters) related to physical and chemical environmental changes. Our data also suggested the importance of sediment redox condition (e.g., ORP and AVS content) and sediment grain size as structuring factors in estuarine soft-bottom communities as well as the salinity in the habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号