首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the hydroacoustic method with a 200 kHz scientific echo sounding system,the diel vertical migration(DVM) of the sound-scattering layer(SSL) in the Yellow Sea Bottom Cold Water(YSBCW) of the southeastern Yellow Sea was studied in April(spring) and August(summer) of 2010 and 2011.For each survey,13–27 hours of acoustic data were continuously collected at a stationary station.The acoustic volume scattering strength(Sv) data were analyzed with temperature profile data.In the spring of both 2010 and 2011,the SSL clearly showed the vertical migration throughout the entire water column,moving from the surface layer at night to near the bottom during the day.Conductivity,temperature,and depth data indicated that the entire water column was well mixed with low temperature of about 8 C.However,the SSL showed different patterns in the summers of 2010 and 2011.In the summer of 2010(28 C at the surface),the SSL migrated to near the bottom during the day,but there were two SSLs above and below the thermocline at depth of 10–30 m at night.In the summer of 2011(20 C at the surface),the SSL extended throughout the entire water column at night,possibly owing to an abrupt change in sea weather conditions caused by the passage of a Typhoon Muifa over the study area.It was concluded that the DVM patterns in summer in the YSBCW area may be greatly influenced by a strengthened or weakened thermocline.  相似文献   

2.
本文使用1960—1980年春季的水文资料,以温度和盐度作为主要指标,根据聚类分析逼近温盐图解,结合对该海域地理环境特征的分析,对烟台、威海及石岛近海春季的水团结构演变及其和渔场、渔期的关系进行综合分析。结果表明,北黄海及青岛外海的冷水团,以及黄海暖水团的强度与位置的变动,对春季渔期的早迟以及渔场位置的变动,都有很大的影响。  相似文献   

3.
以1987年5—6月中日台作黄东海域综合调查的溶解氧资料为主,探讨调查海区溶解氧分布特征与水团的对应关系。指出:近岸水团溶解氧合量高,远海低;上层水团高,下层低。在黄海冷水和东海北部底层冷水的上界出现明显的溶解氧垂直分布最大值及封闭形高氧区。水团边界区,氧跃层明显。溶解氧含量变化与水团温盐特性有关。通过分析发现,溶解氧对鉴别次表层以深各水团,特别对鉴别东海次表层水及黑潮次表层以深各水团,可作为一种有效的指标。  相似文献   

4.
A thermohaline front is located at the southeastern entrance of the Yellow Sea in winter, and it is generated by the intrusion of warm saline water into the Yellow Sea caused by a strong northerly wind. Recently, a westward transversal current traveling away from the west coast of Korea toward the open sea area along the front was reported. The westward transversal current is dominant in the surface layer during the temperature inversion period. The formation and structure of this current are examined using a numerical vertical ocean-slice model. When two different water masses meet, a front is formed and adjusted geostrophically. In this frontal zone, a horizontal pressure gradient flow by the vertically inclined isopycnal occurs under the thermal wind process in a baroclinic effect, and the cold fresh coastal water moves westward along the front in the upper layer. The barotropic effect across the front and the bottom friction effect strengthen the westward component of the velocity. The velocity of the bottom layer decreases remarkably in the increase of the bottom drag coefficient. This means that the bottom friction with the strong background tidal current causes a reduction in the current in the bottom layer.  相似文献   

5.
2010年2月一次冬季黄海海雾的成因分析   总被引:1,自引:0,他引:1  
利用青岛浮标观测、自动气象站观测、Micaps站点观测、L波段雷达等观测数据,New Generation SST,OI-SST和NCEP提供的FNL和CFSR再分析数据。并利用中尺度模式WRF对这次冬季海雾进行诊断分析。得到以下结论:(1)观测表明,这次海雾首先在黄海北部生成,是由于冷暖空气在黄海海域交汇,增大相对湿度,形成混合雾。在22日12:00时(UTC)之后,暖平流北上,冷平流消失。海雾逐渐转成平流冷却雾。青岛出现的海雾是从黄海发展过来的,并且为平流冷却雾。(2)在黄海,冷暖空气混合增大相对湿度,生成混合雾。与后期的平流冷却雾相比,混合雾的高度明显偏低。(3)海温异常偏低。在2010年2月渤海大面积结冰,海温偏低可能与融冰有关系。(4)模式结果表明,混合雾与冷水域的关系密切。平流冷却雾与冷水域的位置基本一致。混合雾和平流冷却雾都受海温影响较大。混合雾雾区变化很大,因为冷空气在移动过程中变性,不利于混合雾生成。冷海面对平流冷却雾起着很关键的作用。这次冬季海雾与春夏季黄海海雾的不同点在:这次海雾的发生机制不同于典型的春夏季黄海海雾。春夏季典型的黄海海雾主要是平流冷却雾,而这次冬季海雾在生成上首先是混合雾,后来转为平流冷却雾。  相似文献   

6.
冬季大风影响下的渤黄海水交换特征   总被引:1,自引:0,他引:1  
利用ROMS海洋数值模式对2006年冬季渤黄海的海洋动力环境进行模拟,基于温度、盐度模拟结果,使用谱混合模型进行水团分析,定义了渤海海峡地区的水交换区。并进一步讨论了冬季大风事件对水交换区的影响,给出了冬季大风影响下的渤黄海水交换特征。研究得出,冬季的黄海水团以“舌”形分布于渤海海峡地区,水交换区则表现为沿“舌”形边缘呈带状分布,具有西北——东南的走向趋势,并且在“舌”尖处的水交换面积最大。通过缩小研究范围,发现位于黄海最北部的沿岸海域并不参与渤黄海之间的水体交换。最后研究发现,冬季大风事件对渤海水交换具有促进作用,具体表现为:大风过程使黄海暖流对渤海的入侵更加深入,水交换区向渤海方向伸展,南部的水交换带变宽,河流径流进入渤海后与渤海水的混合区加大,并发生北移。  相似文献   

7.
The waters in the shallow part of the Yellow Sea and East China Sea are affected greatly by climatic and geographical conditions and fail to possess homogeneity and conservativeness like oceanic waters. They have apparent difference in modified degrees, so we may regard a certain range of mixed water as a relatively independent one. In fact, the study of water masses in the shallow sea means a modified analysis of waters. The idea of modified water masses is introduced, i. e., a water body which holds the similar physical and chemical characters, occupies a certain space, and varies seasonally and regularly. On the T-S diagram, it displays as a certain amount of points aggregated together, the centre of which changes regularly and may have a process of combination and separation.According to the clustering method, there are eight modified water masses in this area. They may also be divided into three salinity types. On the T-S diagram, the points concerning temperature and salinity of different modified  相似文献   

8.
The Yellow Sea Cold Water Mass(YSCWM) is one of the important water mass in the Yellow Sea(YS).It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10 C and the salinity lower than 33.0.To understand the variability of the YSCWM,the hydrographic data obtained in April and August during 2009–2011 are analyzed in the southeastern Yellow Sea.In August 2011,relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area.Although the typhoon passed before the cruise,the salinity in the Yellow Sea central trough is much higher than the previous season.It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter.In April 2011,actually,warm and saline water(T >10 C,S >34) was observed in the deepest water depth of the southeastern area of the Yellow Sea.The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season.The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current.Therefore,it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.  相似文献   

9.
The monthly water mass variations in the Yellow Sea and the East China Sea are investigated using over 40 years of historical temperature and salinity observations via a cluster analysis that incorporates geographical distance and depth separation in addition to the temperature and salinity. Results delineate monthly variations in the major water masses and provide some insight into formation mechanisms and intermixing. The major water masses include the Kuroshio-East China Sea water (KE), the Yellow Sea surface water (YSS) and bottom cold water (YSB), mixed water (MW), and coastal water (CW). The distribution of the KE water mass reveals the intrusion pattern into the area west of Cheju. A separate mixed water type appears between the KE water mass and the Yellow Sea water masses during winter. The formation mechanism of the YSB appears to be the surface cooling and active mixing in winter. In the East China Sea, during summer, surface water is differentiated from the subsurface water while there is no differentiation during winter. In the Yellow Sea, a three layer system exists in the summer and fall (May–November) while a two layer system exists during the rest of the year. A fresh water mass generated by Yangtze River discharge (YD) is present over the northern East China Sea and the southern Yellow Sea during summer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
根据1987年5~6月中日合作对黄东海域进行综合调查的溶解氧资料,讨论了该海区溶解氧垂直结构及氧最大值分布。指出在南黄海北部、中部及东海北部和中部的中层存在明显的溶解氧垂直分布最大值,它总是和冷水同存。并对氧最大值及垂直结构同温跃层及冷暖水之间关系进行了初步分析。  相似文献   

11.
The water dynamics and hydrological structure in the active (oxygen-containing) layer are considered on the basis of the hydrological survey carried out in the 50-mile near-shore zone of the Russian sector of the Black Sea in August 2004 and over the permanent section from Gelendzhik to the central part of the sea. Five mesoscale eddy structures of different signs were observed in the Main Black Sea Current between Sochi and the Kerch Strait. Such a dynamic situation contributed to the intensive horizontal water exchange between the near-shore and open sea waters as well as to the redistribution of water masses over the vertical in the active sea layer, which is indicated by the deepening of the top boundary of the hydrogen sulfide zone in the Russian sector of the sea by 15–20 m.  相似文献   

12.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
浅层气逸出到海水中的气泡声学探测方法   总被引:4,自引:0,他引:4  
针对南黄海西部等地区在海洋调查仪器上发现的海水中浅层气选出气泡产生的声学羽流等气泡记录,首先根据水体中气泡共振发生非线性振动形成的强烈散射现象,计算了我国浅层气分布海区的常见浅层气选出气泡共振频率范围、不同调查仪器在水深变化时的探测气泡大小,据此分析了不同调查仪器探测浅层气选出气泡的范围。其次,根据气泡在水中的变化、运动规律,提出了浅层气选出气泡应当具备的声学特点,排除了南黄海西部地区形成水体中特征反射的其他可能因素,并探讨了云状扰动的可能形成原因。  相似文献   

14.
The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the East China Sea. According to the specified standards to make the cluster, we have determined the number and boundary of the water masses and the mixed zones.The results obtained by the cluster method show that there are eight modified water masses in this area. According to the relative index of temperature and salinity,the modified water masses are divided into nine different characteristic parts. The water, masses may also be divided into three salinity types. On the TS-Diagram, the points concerning temperature and safinity of different modified mater masses are distributed around a curve, from which the characteristics of gradual modification may be embodied. The variation ranges of different modified water masses are all large, explaining the intensive modification of water masses in th  相似文献   

15.
春季(四至五月)是黄海海雾的多发季节,也是亚洲季风的转换季节。 本文对发生在1960-2006年春季的黄海海雾,及其雾气相关的天气特征和大气-海洋条件进行了综合分析。海雾根据I_COADS海面观测数据和同期NCEP/NCAR再分析资料风场的气流后向轨迹聚类分析,可进行气流路径分类。在气流路径分析的基础上,对春季黄海海雾的大尺度低层环流型及其相关的地表散度、湿度垂直分布、水汽水平输送及大气-海表温度差异进行了分析。主要结论总结如下:(1)导致春季黄海海雾形成的气流主要可分为四条路径。气流分别来自黄海的西北、东、东南和西南侧。(2)春季黄海海雾的发生有两种典型的天气型:黄海高压型(HSH)、气旋和反气旋耦合型(CAC)。两种天气型在四月份的出现比例大致相同;但在五月份HSH型的出现比例下降到三分之一左右,而CAC型上升到三分之二左右。(3)HSH和CAC两种天气型的共同特征是黄海位于地面散度中心。 (4)对于HSH型海雾,水汽主要来自局部蒸发,低层大气之上存在明显的干层;对于CAC型雾,水汽主要来自黄海以外,低层大气具有深厚的高湿度层。(5)由于天气型及其湿度垂直分布和水汽水平输送的差异,海雾可分为两类。多数的CAC型海雾为“暖”海雾,而HSH型海雾中的“暖”和“冷”海雾的比例几乎相同。  相似文献   

16.
黄海暖流源区海表面温度锋面的结构及季节内演变   总被引:2,自引:0,他引:2  
刘传玉  王凡 《海洋科学》2009,33(7):87-93
利用1985~2002年月均和每8天平均的AVHRR Pathfinder卫星海表面温度数据,分析了黄海暖流源区海表面温度锋面的分布特征及其季节和季节内演变过程的规律.分析结果表明,黄海暖流源区海表面温度锋面只在冬季及其前后出现,且是一个包含南北两支锋面的锋面系统,其北支锋面位于33°~34°N之间,大体呈东西走向,南支锋面沿长江浅滩边缘,呈西北东南走向,作者称之为黄海暖流源区锋面.该锋面从11月下旬于济州岛西部生成并向西北方向扩展,至1,2月份达到最大程度,于2月下旬后向东南方向退缩并在3月份至5月份之间消失.在该锋面系统的生长期和衰退期,其南北两支锋面有时于西端连接在一起而形成指向西北的舌状锋面.黄海暖流源区锋面的演变过程与黄海暖流的演变过程紧密相关,也对黄东海的质量和热量交换有重要影响.  相似文献   

17.
南黄海春季温、盐结构特征分析   总被引:7,自引:1,他引:7  
利用1992年5月在南黄海获得的CTD资料对该海域春季温、盐结构特征进行了分析,结果表明:(1)春季,南黄海温、盐结构处于由冬季型向夏季型的过渡期,此时,整个研究海域大体上可以20m层为界分为上、下两层。上表层的温、盐结构已基本呈现夏季型特征,但深底层还具有冬季型的某些特征。(2)南黄海春季温、盐结构特征与水团配置具有较密切的关系,亦即不同的温、盐结构对应着不同的水团,反之,同一个水团具有相近的温  相似文献   

18.
The S/V Shoyo, of the Hydrographic Department, Japan Coast Guard, has conducted high-density expendable bathythermograph (XBT) measurements along the 32.5°N line in the North Pacific every year from 1990 to 1993 as a part of the Japanese-World Ocean Circulation Experiment (WOCE). These XBT data are analyzed here, focusing on year-to-year variations of the inventory and core layer temperature (CLT) of the North Pacific subtropical mode water (NPSTMW). Large year-to-year changes are found in the NPSTMW CLTs estimated in longitudes between 140°E and 160°E. CLT values were found of 17.4°C in 1990, 17.1°C in 1991, 17.3°C in 1992 and 17.6°C in 1993. Inspection of the wintertime westerlies over the formation area and sea surface temperature distribution revealed that this change in CLT can be qualitatively attributed to the strength of atmospheric cooling in the formation area in the previous winter. Although a large year-to-year variation of NPSTMW inventory was also found, it is hard to state any relationship between CLT and atmospheric forcing. There is a possibility that different observational seasons may affect the inventory. It has also been found that the thermocline depth in 1991 was shallower in the sea area east of 180° than in 1992 and 1993. Associated with this change, the North Pacific central mode water (NPCMW), characterized by thermostad with temperatures ranging from 14°C to 11°C, appears in the sea area east of 180° in the 1992 and 1993 cross sections. The 1993 cross section, which ranged from the Japanese coast to the west coast of North America, possessed another thermostad in the surface layer, with a temperature of about 17°C in the eastern part of the cross section, off California. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Water masses in the subsurface and the intermediate layer are actively formed due to strong winter convection in the Japan Sea. It is probable that some fraction of pollution is carried into the layer below the sea surface together with these water masses, so it is important to estimate the formation rate and turnover time of water masses to study the fate of pollutants. The present study estimates the annual formation rate and the turnover time of water masses using a three-dimensional ocean circulation model and a particle chasing method. The total annual formation rate of water masses below the sea surface amounted to about 3.53 ± 0.55 Sv in the Japan Sea. Regarding representative intermediate water masses, the annual formation rate of the Upper portion of the Japan Sea Proper Water (UJSPW) and the Japan Sea Intermediate Water (JSIW) were estimated to be about 0.38 ± 0.11 and 1.43 ± 0.16 Sv, respectively, although there was little evidence of the formation of deeper water masses below a depth of about 1500 m in a numerical experiment. An estimate of turnover time shows that the UJSPW and the JSIW circulate in the intermediate layer of the Japan Sea with timescales of about 22.1 and 2.2 years, respectively.  相似文献   

20.
使用ROMS(regional oceanic modeling system)模式模拟了40年的渤黄东海温盐流,数据包括三维的温度、盐度、流速、流向和海表高度,同时包含了逐小时的潮汐信息。将模拟结果与观测资料和卫星反演数据进行对比,检验了模式准确性。整体上,模式模拟的水位与近岸观测值基本一致,能够准确再现风产生的增水;模式较为准确的再现了渤黄东海的温度分布,在深水区模拟的温盐剖面与观测值基本一致;模式模拟渤黄东海区域的海表高度和海表流与卫星反演结果相比偏小,但分布趋势相近。模式结果可以为研究气候变化对水位的影响和黄海暖舌的扩散过程等现象提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号