首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The goal of the paper was to determine the activity of 137Cs and 40K radionuclides as well as heavy metals Zn, Cr, Pb in soil samples taken from the Tatra National Park in the south of Poland. The samples were obtained as cores (10 cm in diameter) from the top 10-cm layer of the soil. Each sample was divided into three subsamples (a, b and c), where a was the subsample closest to the surface and c was the deepest one. Activity of the radionuclides was determined by means of gamma spectrometry, while analysis of heavy metals was performed (after microwave digestion) using atomic absorption spectrometry technique. The highest activity of cesium-137 was detected (5112 ± 120 Bq kg?1) in the “a” layer of the core with the peak concentration of cesium-137 (14,452 ± 278 Bq m?2) in the whole soil core. The highest detected concentration of heavy metals was: Zn—52.8 ± 4.4 mg kg?1, Pb—260.1 ± 9.4 mg kg?1, Cr—52.8 ± 4.4 mg kg?1, respectively. Cluster analysis and principal component analysis were used to examine the obtained data. Application of statistical analysis tools allowed specifying the interdependencies between the examined variables.  相似文献   

2.
Submarine groundwater discharge (SGD) is herein recognized as a significant pathway of material transport from land to the coastal SW Atlantic Ocean and thus, it can be a relevant factor affecting the marine biogeochemical cycles in the region. This paper focuses on the initial measurements of 226Ra, 228Ra and 222Rn made in Patagonia’s coastal zone of Chubut and Santa Cruz provinces (42°S–48°S, Argentina). 226Ra activity ranged from 2.9 to 73.5 dpm 100 L?1, and 228Ra activity ranged from 11.9 to 311.0 dpm 100 L?1 in groundwater wells. The radium activities found in Patagonia’s marine coastal regions and adjacent shelf indicate significant enrichment throughout the coastal waters. Groundwater samples presented the largest 222Rn activity and ranged from 2.66 to 1083 dpm L?1. Conversely, in the coastal marine environment, the 222Rn activity ranged from 1.03 to 6.23 dpm L?1. The Patagonian coastal aquifer showed a larger enrichment in 228Ra than in 226Ra, which is a typical feature for sites where SGD is dominant, probably playing a significant role in the biogeochemistry of these coastal waters.  相似文献   

3.
Measurements of groundwater-dissolved inorganic nitrogen (nitrate?+?nitrite?+?ammonia) and phosphate concentrations were combined with recent, radium-based, submarine groundwater discharge (SGD) fluxes and prior estimates of SGD determined from Darcy’s Law, a hydrologic model, and total recharge to yield corresponding SGD nutrient fluxes to Ninigret, Point Judith, Quonochontaug, and Winnapaug ponds, located in southern Rhode Island. Results range from 80 to279 mmol N m?2 year?1 and 4 to 15 mmol P m?2 year?1 for Ninigret, 48 to 265 mmol N m?2 year?1 and 4 to 23 mmol P m?2 year?1 for Point Judith, 31 to 62 mmol N m?2 year?1 and 1 to 2 mmol P m?2 y?1 for Quonochontaug, and 668 to 1,586 mmol N m?2 year?1 and 29 to 70 mmol P m?2 year?1 for Winnapaug ponds, respectively. On a daily basis, the SGD supply of dissolved inorganic nitrogen and phosphorus is estimated to represent ~1–6 % of the total amount of these nutrients in surface waters of Ninigret, Point Judith, and Quonochontaug ponds and up to 84 and 17 % for Winnapaug, respectively, which may reflect a greater SGD nutrient supply to this pond because of the proximity of fertilized golf courses. With regard to the total external input of these essential nutrients, SGD represents 29–45 % of dissolved inorganic nitrogen input to Ninigret, Point Judith, and Quonochontaug ponds and as much as 93 % for Winnapaug pond. For phosphorus, the contribution from SGD represents 59–85 % of the total external input for Ninigret, Point Judith, and Quonochontaug ponds and essentially all of the phosphorus input to Winnapaug pond. Estimated rates of primary productivity potentially supported by the average supply of dissolved inorganic nitrogen from SGD range from 10 g C m?2 year?1 for Ninigret, 13 g C m?2 year?1 for Point Judith, 4 g C m?2 year?1 for Quonochontaug, and as high as 84 g C m?2 y?1 for Winnapaug pond. The imputed SGD-derived rates of primary productivity represent 4–9 % of water column primary production for Ninigret, Point Judith, and Quonochontaug ponds, and 74 % for Winnapaug pond, a result that is reasonably comparable to several other coastal environments where estimates of SGD nutrient supply have been reported. The implication is that SGD represents an ecologically significant source of dissolved nutrients to the coastal salt ponds of southern Rhode Island and, by inference, other coastal systems.  相似文献   

4.
Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from ?5.5 to 2.7 m·a?1 (mean ?0.6 m·a?1). Mean coastal retreat decreased from ?0.6 m·a?1 to ?0.5 m·a?1, for 1952–1970 and 1970–2000, respectively, and increased to ?1.3 m·a?1 in the period 2000–2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.  相似文献   

5.
Rice cultivation in the Ebro Delta (Catalonia, Spain) has inverted the natural hydrological cycles of coastal lagoons and decreased water salinities for over 150 years. Adjustments in the water management practices—in terms of source and amount of freshwater inputs—have resulted in changes in the diversity, distribution and productivity of submerged angiosperms. Between the 1970s and late 1980s, a massive decline of the aquatic vegetation occurred in the Encanyissada–Clot and Tancada lagoons, but little information on the status is available after the recovery of macrophytes in the 1990s. Here, we evaluate the influence of salinity regimes resulting from current water management practices on the composition, distribution, seasonal abundance and flowering rates of submersed macrophytes, as well as on the occurrence of epiphyte and drift macroalgae blooms in three coastal lagoons. Our results show that Ruppia cirrhosa is the dominant species in the Encanyissada lagoon (185.97?±?29.74 g?DW?m?2?year?1; 12–27?‰ salinity) and the only plant species found in the Tancada lagoon (53.26?±?10.94 g?DW?m2?year?1; 16–28?‰ salinity). Flowering of R. cirrhosa (up to 1,011?±?121 flowers?m?2) was only observed within the Encanyissada and suggests that mesohaline summer conditions may favor these events. In contrast, low salinities in Clot lagoon (~3–12?‰) favor the development of Potamogeton pectinatus (130.53?±?13.79 g?DW?m2?year?1) with intersperse R. cirrhosa (8.58?±?1.71 g?DW?m?2) and mixed stands of P. pectinatus and Najas marina (up to ~57 g?DW?m?2?year?1) in some reduced areas. The peak biomasses observed during the study are 88 to 95 % lower than maximum values reported in the literature at similar salinities, and there is also little or no recovery in some areas compared to last reports more than 20 years ago. The main management actions to restore the natural diversity and productivity of submersed angiosperms, such as the recovering of the seagrass Zostera noltii, should be the increase of salinity during the period of rice cultivation, by reducing freshwater inputs and increasing flushing connections with the bays.  相似文献   

6.
The presence of domoic acid (DA) toxin from multiple species of Pseudo-nitzschia is a concern in the highly productive food webs of the northern Gulf of Mexico. We documented the Pseudo-nitzschia presence, abundance, blooms, and toxicity over three years along a transect ~100 km west of the Mississippi River Delta on the continental shelf. Pseudo-nitzschia were present throughout the year and occurred in high abundances (>104 cells l?1) in the early spring months during high Mississippi River (MSR) flow (~20,000 m3 s?1) but were most abundant (>106 cells l?1) when MSR discharge was relatively lower among the spring months. A high particulate toxin production (maximum reaching 13 μg DA l?1) was associated with the high cell abundances and exceeded, by an order of magnitude, prior reports of particulate DA concentrations in Louisiana coastal waters. Differences in Pseudo-nitzschia peak times and its toxicity were correlated mainly with the timing and magnitude of MSR discharge and changes in associated parameters such as nutrient stoichiometry and salinity. A negative relationship between high MSR discharge and Pseudo-nitzschia and particulate DA concentrations was documented. These riverine dynamics have the potential to influence DA contamination in pelagic and benthic food webs in the coastal waters of the northern Gulf of Mexico.  相似文献   

7.
Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude ?31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m?2 estuary day?1; 20 mmol m?2 catchment day?1, respectively), with a large export of alkalinity (23 mmol m?2 catchment day?1). Average water to air flux of CO2 (869 mmol m?2 day?1) and CH4 (26 mmol m?2 day?1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.  相似文献   

8.
Coastal marshes are known as organic matter producers. The goal of this work is to study tiller demography, standing biomass, and net aerial primary productivity (NAPP) in a Spartina densiflora coastal wetland, using a method applied to permanent sample plots located at two sites differing in topographic location, a regularly flooded zone [relative low marsh (LM)] and an irregularly flooded one [relative high marsh (HM)]. Measurements were made every 2 months during the 2005–2007 period. The annual NAPP was estimated to be 2,599?±?705 gDW m?2?year?1 for the HM and 2,181?±?605 gDW m?2?year?1 and 602?±?154 gDW m?2?year?1 for the first and second period of the LM populations, respectively, showing a seasonal pattern reaching maximum values in summer. The reduced NAPP values of the LM sites in the second year was associated with an extremely high precipitation period related to the 2007–2008 El Niño event.  相似文献   

9.
A new classification of coastal wetlands along the coast of China has been generated that is compatible with the Ramsar Convention of 1971. The coastal wetlands have been divided into two broad categories with overall nine subcategories. On this basis, a series of coastal wetland maps, together covering the coast of mainland China, have been produced based on topographic maps acquired in the 1970s and satellite images acquired in 2007. These document substantial wetland losses over this period. In the 1970s, the total coastal wetland area in China was 5.76?×?104?km2, whereas in 2007, it was 5.36?×?104?km2, indicating a loss of 7 %. Over this approximately 40-year period, the area of natural coastal wetlands decreased from 5.74?×?104 to 5.09?×?104?km2, while that of artificial coastal wetlands increased from 240 to 2,740 km2. Due to shoreline and sea-level changes, newly formed coastal wetlands amounted to 2,460 km2, while coastal wetland loss amounted to 6,310 km2 in the period from the 1970s to 2007. When excluding shallow coastal waters (depths between 0 and ?5 m), nearly 16 % of Chinese coastal wetlands have been lost between the 1970s and 2007.  相似文献   

10.
11.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   

12.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

13.
A geophysical and geochemical study was carried out in the Maneadero aquifer, Baja California, Mexico, with the aim of identifying potential recharge locations for reclaimed water (RW). This coastal aquifer shows a significant decline in water quality, both as a result of salinization and the pollution by nitrates. Total dissolved solids (TDS) in an extreme case increased from 4 g l?1 in 2000 to 27 g l?1 in 2011. Nitrate as N–NO3, reaches 46 mg l?1. Based on their geochemistry and location, four water-quality zones are identified: (a) fresh water with TDS ≈ 1 g l?1 in the upper creeks, (b) mixture between seawater and freshwater in the coast-proximal sections, (c) water significantly enriched in nitrate below and adjacent to the town of Maneadero, and (d) brackish water with no signs of current interaction with freshwater. The 3D geophysics identifies the influence of modern recharge areas and also buried flow-paths down to at least 30 m depth. The locations best suitable for aquifer recharge are those with equal or higher TDS concentrations (>2.5 g l?1) than RW, which are located at the brackish water zone and/or at the coastal limits of the mixing zones.  相似文献   

14.
Undiluted reject water from the dewatering of anaerobic sludge with an average total nitrogen content of 718 ± 117 mg L?1 (n = 63) was used to start-up autotrophic nitrogen removal in three different pilot-scale (3 m3) deammonification configurations: (1) biofilm; (2) activated sludge sequence batch; and (3) two-staged (nitritation–anammox). Time- and concentration-based aeration control with alternating aerobic/anaerobic phases was applied for all reactor configurations. All reactors were initiated without anammox-specific inoculum, and biofilm was grown onto blank carriers. During the initial start-up period, biological nitrogen removal was found to be inhibited by an excessive free ammonia content (>10 mg-N L?1), resulting from the use of high-strength reject water as the process feed. After implementation of free ammonia control by pH adjustment to 6.5–7.5, propagation of the deammonification process was observed with increased nitrogen removal with slight accumulation of NO3 ?–N. The highest total nitrogen removal rates were achieved with the single-reactor biofilm- and sludge-based deammonification processes (1.04 and 0.30 kg-N m?3 day?1, respectively). The critical factors for successful start-up and stable operation of deammonification reactors turned out to be control of pH below 7.5, dissolved oxygen at 0.3–0.8 mg-O2 L?1 and influent solids values below 1000 nephelometric turbidity units. Microbial analysis demonstrated that highest anammox enrichment was achieved in the biofilm reactor (9.40 × 108 copies g?1 total suspended solids). These data demonstrate the potential of an in-situ grown sludge- or biofilm-based concept for the development and propagation of deammonification process.  相似文献   

15.
Axenic culture of microalgae Chlorella vulgaris ATCC® 13482 and Scenedesmus obliquus FACHB 417 was used for phycoremediation of primary municipal wastewater. The main aim of this study was to measure the effects of normal air and CO2-augmented air on the removal efficacy of nutrients (ammonia N and phosphate P) from municipal wastewater by the two microalgae. Batch experiments were carried out in cylindrical glass bottles of 1 L working volume at 25 °C and cool fluorescent light of 6500 lux maintaining 14/10 h of light/dark cycle with normal air supplied at 0.2 L min?1 per liter of the liquid for both algal strains for the experimental period. In the next set of experiments, the treatment process was enhanced by using 1, 2 and 5% CO2/air (vol./vol.) supply into microalgal cultures. The enrichment of inlet air with CO2 was found to be beneficial. The maximum removal of 76.3 and 76% COD, 94.2 and 92.6% ammonia, and 94.8 and 93.1% phosphate after a period of 10 days was reported for C. vulgaris and S. obliquus, respectively, with 5% CO2/air supply. Comparing the two microalgae, maximum removal rates of ammonia and phosphate by C. vulgaris were 4.12 and 1.75 mg L?1 day?1, respectively, at 5% CO2/air supply. From kinetic study data, it was found that the specific rates of phosphate utilization (q phsophate) by C. vulgaris and S. obliquus at 5% CO2/air supply were 1.98 and 2.11 day?1, respectively. Scale-up estimation of a reactor removing phosphate (the criteria pollutant) from 50 MLD wastewater influent was also done.  相似文献   

16.
Three chromium-resistant bacteria Bacillus pumilus-S4, Pseudomonas doudoroffii-S5 and Exiguobacterium-S8 were isolated from chromium-contaminated wastewater/soil and could resist very high concentrations of potassium chromate in Luria agar (up to 25 mg ml?1) and acetate minimal medium (2 mg ml?1). The strains showed growth at diverse pH and temperatures and could resist multiple heavy metals. Pseudomonas doudoroffii-S5 reduced (8.27 mg hexavalent chromium 24 h?1) at a lower initial potassium chromate concentration (100 μg ml?1), but overall more chromate (28.4 mg hexavalent chromium 24 h?1) was reduced at a higher initial concentration (1,000 μg ml?1). The addition of various heavy metals (zinc sulphate, copper sulphate, and manganese sulphate at 50 μg ml?1) in the chromium reduction media did not significantly affect the hexavalent chromium reduction potential of these isolates. The chromium removal/detoxification potential of these strains increased when used in conjunction with hydrophytes Eichornia crassipes and Pistia stratiotes. Interestingly, the whole process runs automatically with less energy input, that is, the bacterial strains support the growth of plant while in turn the plant releases exudates that help bacterial growth.  相似文献   

17.
Bisphenol-A is one of the highest volumes of chemicals produced worldwide and released into the atmosphere each year. Recent extensive literature has raised concerns about its possible endocrine-disrupting effect in animals and humans. A bacterium having high tolerance of bisphenol-A (1000 mg L?1) was isolated from agriculture soil of Coimbatore District, Tamil Nadu, India, and identified as Virgibacillus sp. KU4 by 16S ribosomal RNA sequence analysis. Bisphenol-A removal efficiency of this strain was measured as greater than 92% at seventh day of incubation in a basal mineral medium supplemented with 1000 mg L?1 at seventh day. Gas chromatography analysis showed that 1000 mg L?1 BPA in distilled water was degraded by the Virgibacillus sp. KU4 in an efficient way. A 70 ± 3% bisphenol-A degradation was observed in the suspended cell pellet-mediated degradation study, where distilled water supplemented with 1000 mg L?1 bisphenol-A was sole carbon and energy source for bacterial growth. Further, Virgibacillus sp. KU4 is expected to be a candidate as a biological cleaner of BPA in the environment.  相似文献   

18.
The Patos Lagoon estuary is an important environment for the life cycle of many species, including the pink shrimp Farfantepenaeus paulensis. This area acts as a nursery ground for the shrimp larvae, which are spawned in a coastal area and transported into the lagoon during spring and early summer (September to December). Harvesting of shrimp occurs from January to May, and yields have varied from around 1,000 to 8,000 tons year?1. This study is based on analysis of river discharge, pink shrimp catches, and wind velocity time series from 1964 to 2004. Negative correlation between pink shrimp catches and river runoff reflects the influence of discharge on the lagoon circulation and, consequently, on the intrusion of salt water and larvae. When river discharge is below average, landward currents forced by SW winds can enhance larval transport into the estuarine area, leading to an increase in pink shrimp captures. Above average river input would force a seaward flow that works as a barrier to ingress of larvae. This is unusual when compared to many other estuarine systems, and the main factor that accounts for this behavior is the morphology (choking) of Patos Lagoon. Interannual variability related to El Niño/Southern Oscillation events also influence pink shrimp production in this area. Low/high shrimp catches are related to El Niño (flood)/La Niña (drought) events. Wind can also impact production through its effect on the southward displacement of larvae from the spawning area. Long-term trends indicate an increase in river discharge around 20 m3 s?1year?1 and a decrease in shrimp catches on the order of 57 tons year?1.  相似文献   

19.
Filter-feeding bivalves, like oysters, couple pelagic primary production with benthic microbial processes by consuming plankton from the water column and depositing unassimilated material on sediment. Conceptual models suggest that at low to moderate oyster densities, this deposition can stimulate benthic denitrification by providing denitrifying bacteria with organic carbon and nitrogen (N). While enhanced denitrification has been found at oyster reefs, data from oyster aquaculture are limited and equivocal. This study measured seasonal rates of denitrification, as well as dissimilatory nitrate reduction to ammonium (DNRA), and dissolved inorganic N fluxes at a rack and bag eastern oyster (Crassostrea virginica) aquaculture farm. Consistent with models, denitrification was enhanced within the farm, with an average annual increase of 350% compared to a reference site. However, absolute denitrification rates were low relative to other coastal systems, reaching a maximum of 19.2 μmol m?2 h?1. Denitrification appeared to be nitrate (NO3 ?) limited, likely due to inhibited nitrification caused by sediment anoxia. Denitrification may also have been limited by competition for NO3 ? with DNRA, which accounted for an average of 76% of NO3 ? reduction. Consequently, direct release of ammonium (NH4 +) from mineralization to the water column was the most significant benthic N pathway, with seasonal rates exceeding 900 μmol m?2 h?1 within the farm. The enhanced N processes were spatially limited however, with significantly higher rates directly under oysters, compared to in between oyster racks. For commercial aquaculture farms like this, with moderate oyster densities (100–200 oysters m?2), denitrification may be enhanced, but nonetheless limited by biodeposition-induced sediment anoxia. The resulting shift in the sediment N balance toward processes that regenerate reactive N to the water column rather than remove N is an important consideration for water quality.  相似文献   

20.
The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m?2 year?1, respectively, with a mean of 140 mol m?2 year?1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号