共查询到20条相似文献,搜索用时 15 毫秒
1.
At interannual to multidecadal time scales, much of the oceanographic and climatic variability in the North Atlantic Ocean can be associated with the North Atlantic Oscillation (NAO). While evidence suggests that there is a relationship between the NAO and zooplankton dynamics in the North Atlantic Ocean, the phytoplankton response to NAO-induced changes in the environment is less clear. Time series of monthly mean phytoplankton colour values, as compiled by the Continuous Plankton Recorder (CPR) survey, are analysed to infer relationships between the NAO and phytoplankton dynamics throughout the North Atlantic Ocean. While a few areas display highly significant (p < 0.05) trends in the CPR colour time series during the period 1948–2000, nominally significant (p < 0.20) positive trends are widespread across the basin, particularly on the continental shelves and in a transition zone stretching across the Central North Atlantic. When long-term trends are removed from both the NAO index and CPR colour time series, the correlation between them ceases to be significant. Several hypotheses are proposed to explain the observed variability in the CPR colour and its relationship with climate in the North Atlantic. 相似文献
2.
Nutrient irrigation of the North Atlantic 总被引:2,自引:1,他引:2
The North Atlantic, as all major oceans, has a remarkable duality in primary production, manifested by the existence of well-defined high and low mean primary production regions. The largest region is the North Atlantic Subtropical Gyre (NASTG), an anticyclone characterized by bowl shaped isopycnals and low production. The NASTG is surrounded at its margins by smaller cyclonic high-production regions, where these isopycnals approach the sea surface. The most extensive cyclonic regions are those at the latitudinal extremes, i.e. the subpolar and tropical oceans, though smaller ones do occur at the zonal boundaries. In this article we review historical data and present new analyses of climatological data and a selected number of hydrographic cruises in the western/northwestern and eastern/southeastern boundaries of the NASTG, with the objective of investigating the importance of upward epipycnal advection of nutrient-rich subsurface layers (irrigation) in maintaining high primary production in the euphotic layers. In the North Atlantic Subpolar Gyre (NASPG) irrigation implies intergyre exchange caused by the outcropping extension of the Gulf Stream (GS), following the formation of the deep winter mixed-layer. In the eastern boundary of the NASTG irrigation is attained through a permanent upwelling cell, which feeds the Canary Upwelling Current (CUC). In the southeastern corner irrigation occurs in fall, when the Guinea Dome (GD) is reinforced, and in winter, when the CUC reaches its southernmost extension. Other characteristics of the north/south extension of the GS/CUC are the seasonal nutrient replenishing of subsurface layers (spring restratification of NASPG and winter relaxation of the GD) and the maintenance of high levels of diapycnal mixing during the last phase of nutrient transfer to the euphotic layers. Off the Mid-Atlantic Bight the GS transports a total of about 700 kmol s−1 of nitrate, with almost 100 kmol s−1 carried in the surface (σθ < 26.8) layers and some 350 kmol s−1 in the intermediate (26.8 < σθ < 27.5) layers. A box model suggests that north of Cape Hatteras most surface and upper-thermocline nitrates are used to sustain the high levels of primary production in the NASPG. Off Cape Blanc there is winter along-shore convergence of order 10 kmol s−1 of nitrate in the near-surface layers (possibly larger in summer), with only a small fraction used to sustain local primary production in the coastal upwelling band and the remainder carried to the interior ocean. Nutrients and biomass exported from these cyclonic regions may account for the concentration levels observed within the NASTG. 相似文献
3.
4.
Markus Pahlow Alain F. Vézina Heidi Maass Daniel G. Wright 《Progress in Oceanography》2008,76(2):151-191
Plankton ecosystems in the North Atlantic display strong regional and interannual variability in productivity and trophic structure, which cannot be captured by simple plankton models. Additional compartments subdividing functional groups can increase predictive power, but the high number of parameters tends to compromise portability and robustness of model predictions. An alternative strategy is to use property state variables, such as cell size, normally considered constant parameters in ecosystem models, to define the structure of functional groups in terms of both behaviour and response to physical forcing. This strategy may allow us to simulate realistically regional and temporal differences among plankton communities while keeping model complexity at a minimum.We fit a model of plankton and DOM dynamics globally and individually to observed climatologies at three diverse locations in the North Atlantic. Introducing additional property state variables is shown to improve the model fit both locally and globally, make the model more portable, and help identify model deficiencies. The zooplankton formulation exerts strong control on model performance. Our results suggest that the current paradigm on zooplankton allometric functional relationships might be at odds with observed plankton dynamics. Our parameter estimation resulted in more realistic estimates of parameters important for primary production than previous data assimilation studies.Property state variables generate complex emergent functional relationships, and might be used like tracers to differentiate between locally produced and advected biomass. The model results suggest that the observed temperature dependence of heterotrophic growth efficiency [Rivkin, R.B., Legendre, L., 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291 (5512) 2398-2400] could be an emergent relation due to intercorrelations among temperature, nutrient concentration and growth efficiency. A major advantage of using property state variables is that no additional parameters are required, such that differences in model performance can be directly related to model structure rather than parameter tuning. 相似文献
5.
Russell D. Frew Paul F. Dennis Karen J. Heywood Michael P. Meredith Steven M. Boswell 《Deep Sea Research Part I: Oceanographic Research Papers》2000,47(12)
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass. 相似文献
6.
Combination of estimated water transport and accurate measurements of total carbon dioxide (TCO2) on a hydrographic section at 58 °N allows the assessment of meridional inorganic carbon transport in the northern North Atlantic Ocean. The transport has been decomposed into contributions from the large-scale baroclinic overturning, the Ekman transport, baroclinic and a barotropic eddy terms, and an estimated contribution of the East Greenland Current. These terms are −0.27 · 106, +0.03 · 106, +0.03 · 106, +0.10 · 106, and +0.05 · 106 mol s−1, respectively, which result in a total southward inorganic carbon transport of only −0.06 · 106 mol s−1. An order of magnitude estimate of the meridional transport of dissolved organic carbon (DOC) has shown that in general this term cannot be ignored in the total carbon flux, this being +0.04 · 106 to +0.16 · 106 mol s−1 at 58 °N. A simple carbon budget has been formulated for the temperate North Atlantic, using our flux estimates as well as those of Brewer et al. (1989). This budget shows that the divergence of the meridional carbon flux, connected with the freshwater balance of the ocean may be of the same order of magnitude as the divergence of the total inorganic carbon flux. For an accurate estimate of the total carbon budget of the ocean it will be necessary to take both the DOC transport and the effects of the freshwater balance into account. 相似文献
7.
Poles of rotation for the North Atlantic have been derived from the results of a new aeromagnetic survey northeast of Newfoundland. Reconstruction of the North Atlantic at anomaly 34 time shows a band of large amplitude magnetic anomalies which parallels anomaly 34 on both sides of the Atlantic from Flemish Cap and Goban Spur to the Azores-Gibraltar Fracture Zone. A group of similar anomalies has also been identified in the Bay of Biscay. North of Goban Spur and Flemish Cap, these anomalies follow the ocean-continent boundary. Poles of rotation derived for this anomaly show that it forms an isochron (100–110 m.y.) during the long Cretaceous normal polarity interval. The cause of this anomaly is not definite, but it may represent an increase in the magnetization of the crust during a limited time within the Cretaceous Magnetic Quiet Zone by a process such as replacement of thermoremanent magnetization by chemical remanent magnetization as proposed by Raymond and LaBrecque.The North Atlantic has also been reconstructed at the time of the initial opening in the region between Flemish Cap and the Charlie-Gibbs Fracture Zone, using inferred ocean-continent boundaries on the west and east sides: it has been shown that the entire region could not have saparated at one time, but that spreading between the British Isles and Newfoundland had to progress from south to north. Consequently, when active sea-floor spreading was taking place between Goban Spur and Flemish Cap (about 110 m.y.) the region to the north was still being stretched. The calculated amount of stretching as derived from the reconstructions (about 25%) agrees well with the extension of the lithosphere obtained from modelling the subsidence history of this region, and with the results of deep seismic studies. Active spreading in the north started about 100 m.y. ago. 相似文献
8.
Hydrographic time series from the northern North Atlantic throughout the 20th century show oscillations in temperature and salinity at more or less regular intervals. The Great Salinity Anomalies described during the 1970s [Dickson, R.R., Meincke, J., Malmberg, S.-A., Lee, A.J., 1988. The “Great Salinity Anomaly” in the North Atlantic, 1968-1982. Progress in Oceanography 20, 103-151.], during the 1980s [Belkin, I.M., Levitus, S., Antonov, J., Malmberg, S.-A., 1998. “Great Salinity Anomalies” in the North Atlantic. Progress in Oceanography 41, 1-68.], and during the 1990s [Belkin, I.M., 2004. Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophysical Research Letters 31(8), L08306, doi:10.1029/2003GL019334.] have distinct amplitudes, and all three of them were interpreted as low salinity anomalies propagating downstream through the anti-clockwise circulation system of the northern North Atlantic Ocean. Further inspection of time series from the Northeast Atlantic and the Northwest Atlantic over the past century shows, however, several other distinct negative anomalies of lesser amplitudes. Additionally, a number of high salinity anomalies can be identified. The present paper analyses further the propagation of the negative and positive anomalies and links them together. It is shown that they have varying speeds of propagation, and that the varying speeds are correlated across the North Atlantic. We propose that varying volume fluxes in and out of the Arctic Basin is the causal mechanism behind the anomaly signals, and that the North Atlantic Oscillation (NAO) partly has influence on the flux variations described. Periods of large decadal-scale amplitudes of the NAO coincide with periods of large decadal-scale oscillation in the marine climate. 相似文献
9.
火山活动对于北大西洋涛动的激发作用 总被引:2,自引:0,他引:2
为了探索北大西洋涛动形成的大尺度大气物理场背景条件和外部强迫因子,通过对比分析、相关分析和环流系统温压场垂直结构分析得到:(1)强火山活动指数距平与冰岛低压和亚速尔高压海平面气压场(SLP)距平总体相关函数符号相反,强火山活动指数与冰岛低压SLP为反相关,与亚速尔高压SLP为正相关,就是说火山活动指数异常引起了高纬度冰岛低压和中低纬度亚速尔高压海平面气压场相反的变化趋势,形成高低纬之间海平面气压场反相振荡;(2)夏季7月亚速尔高压对流层中下层至海平面,温度距平中心和位势高度距平中心距平符号大致正正相对负负相对,说明夏季亚速尔高压为深厚暖性系统,低层温度升高亚速尔高压加强,低层温度降低亚速尔高压减弱,所以火山活动指数与亚速尔高压SLP均呈反相关关系;冬季1月对流层中下层至海平面,温度距平和位势高度距平符号大致正负相对,说明冬季亚速尔高压为浅薄系统,低层温度升高亚速尔高压减弱,低层温度降低亚速尔高压加强,所以火山活动指数与亚速尔高压SLP均呈正相关关系;(3)冬季1月冰岛低压对流层中下层至海平面,温度距平中心和位势高度距平中心距平符号大致正正相对负负相对,说明冬季冰岛低压为深厚冷性系统,低层温度升高冰岛低压减弱,低层温度降低冰岛低压加深,所以火山活动指数与冰岛低压SLP均呈反相关关系;夏季7月对流层中下层至海平面,温度距平和位势高度距平符号大致正负相对,说明夏季冰岛低压为浅薄系统,低层温度升高冰岛低压减弱,低层温度降低冰岛低压加深,所以火山活动指数与冰岛低压SLP均呈正相关关系;(4).由于对流层中下层至海平面冰岛低压和亚速尔高压冬、夏季温压场结构特点基本相反,火山活动指数异常在两个环流系统中引起了相反响应,导致高低纬之间海平面气压场反相振荡,形成了影响广泛的著名的北大西洋涛动现象。 相似文献
10.
11.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for 38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for 28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for 33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at 4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation. 相似文献
12.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率、声源深度和掠射角等因素确定的情况下,分析北大西洋冬季(1-3月)声道轴深度、最小声速值、表层声速值的分布,通过仿真计算研究选用位置点5 m深度声源的声传播规律:反转深度随纬度升高而降低,低纬度海岭东西两侧差别不大,15°N以北为西侧大于东侧。55°N以南海区可形成汇聚区波导,海岭西侧的汇聚区跨度大于海岭东侧,有混合层时还存在一定强度的表面波导,汇聚区处5 m、100 m和250 m接收深度上的传播损失差异较小,增益为7~19 dB,55°N以北海区则为有焦散结构的表面波导。以北大西洋35°N为界,以南以汇聚区波导探测有利,以北以表面波导探测有利。 相似文献
13.
14.
High-resolution physical, mineralogical, sedimentological and micropalaeontological studies were carried out on North Atlantic cores from the Reykjanes Ridge at 59°N and from the region southwest of the Faeroe Islands. All core sites are situated along the pathway of Iceland-Scotland Overflow Water (ISOW) and the various parameters measured display similar features. Previously identified carbonate oscillations [Keigwin and Jones (1994) J. Geophys. Res., 99, 12397-12410] in the time span back to the Marine Isotope Stage 5-4 transition and Late Glacial lithic events [Bond and Lotti (1995) Science, 267, 1005-1010], such as the Heinrich ice-rafting events, are all represented in the core records. Long-term trends and higher-frequency changes in ISOW intensity were reconstructed on the basis of various independent proxy records. The long-term trends in circulation match theoretical orbitally forced insolation changes. Our observed links between ice-rafted detritus (IRD) input, variations in sea surface temperature (SST) and circulation at greater depth point to the need to re-examine the origin of IRD events. We suggest that these events may have been triggered by enhanced, partly sub-surface, heat transport to the north. Enhanced northward heat transport may have caused bottom melting of floating outlet glaciers and ice shelves, leading to increased iceberg discharge and ice sheet destabilization. This discharge resulted in lower SST’s and a lower temperature over Greenland. Thus, as shown by our records, this scenario implies a temporary de-coupling of surface processes and circulation at greater depth. A key feature is the occurrence of a saw-tooth pattern in the marine data, which is similar to the Greenland ice core records. Moreover, the ‘warming’ theory of IRD events would explain the observed ‘out-of-phase’ relationship between the Greenland and Antarctic ice core records and also the rapid establishment of higher temperatures over Greenland immediately after the cold phases (stadials) of the Dansgaard-Oeschger cycles. 相似文献
15.
Ages of tide provide relevant information about the spatial distribution of existing anomalies in the normal modes of the oceans, because a delay may be associated with bottom friction energy dissipation, closely located resonances, bathymetric gradients, or radiational effects. The determination of other parameters, such as the age of diurnal tide or age of parallax, also provide further knowledge about the ocean's hydrodynamical response to acting forces. Following the development of new ocean models and the availability of a greater amount of data, these parameters can be redetermined. We present the spatial distribution of these parameters in the Northeast Atlantic Ocean and the Mediterranean Sea, obtained from 507 stations. The results are discussed in terms of bathymetric models, coastal features, sea surface temperature, wind and other environmental factors. 相似文献
16.
Ages of tide provide relevant information about the spatial distribution of existing anomalies in the normal modes of the oceans, because a delay may be associated with bottom friction energy dissipation, closely located resonances, bathymetric gradients, or radiational effects. The determination of other parameters, such as the age of diurnal tide or age of parallax, also provide further knowledge about the ocean's hydrodynamical response to acting forces. Following the development of new ocean models and the availability of a greater amount of data, these parameters can be redetermined. We present the spatial distribution of these parameters in the Northeast Atlantic Ocean and the Mediterranean Sea, obtained from 507 stations. The results are discussed in terms of bathymetric models, coastal features, sea surface temperature, wind and other environmental factors. 相似文献
17.
Changes in the composition of planktonic ostracod populations across a range of latitudes in the North-east Atlantic 总被引:2,自引:0,他引:2
A large database representing the bathymetric distribution of 117 species of halocyprid ostracods has been compiled from seven stations forming a transect from the equator to 60°N along 20°W, plus an additional station at 32°N, 65°W. This data base is analysed to examine the latitudinal and bathymetric changes in species composition and diversity of assemblages of this important, yet neglected, holoplanktonic group. At each station stratified sampling of the complete water column from the surface down mostly to 2000 m was carried out both day and night. Each sample resulted from the filtration of at least 2500 m3 of water and was analysed using a consistent protocol. The differences between the day and night profiles are attributable to diel vertical migrations, to local-scale heterogeneity, and possibly to a degree of net avoidance. There is a gradient of increasing species richness and diversity from high to low latitudes. By day, halocyprids are either infrequent or absent from the upper 50 m of the water column, but at night after diel vertical migration they become quite abundant in the epipelagic zone, particularly at low latitudes. Bathymetric profiles show ostracod abundances increase rapidly below the thermocline, reaching maxima at 200-400 m and then declining by at least an order of magnitude at 2000 m. Diversity (both species richness, H′ and evenness, J) also increases below the thermocline and thereafter is either maintained or declines only slightly to 2000 m. There are no relationships among diversity, abundance and productivity, but analysis of the whole database shows that the changes in community structure are consistent with Longhurst’s [Longhurst, A.R., 1998. Ecological Geography of the Sea. Academic Press, San Diego, pp. xiv, 398.] biogeochemical provinces. 相似文献
18.
A. Dawson L. Elliott S. Noone K. Hickey T. Holt P. Wadhams I. Foster 《Marine Geology》2004,210(1-4):247-259
The existence of a well-defined climate ‘see-saw’ across the North Atlantic region and surrounding areas has been known for over 200 years. The occurrence of severe winters in western Greenland frequently coincides with mild winters in northern Europe. Conversely, mild winters in western Greenland are frequently associated with cold winters across northern Europe. Whereas this ‘see-saw’ is normally discussed in terms of air temperature and pressure differences, here we explore how the climate ‘see-saw’ is reflected in records of historic storminess from Scotland, NW Ireland and Iceland. It is concluded that the stormiest winters in these regions during the last ca. 150 years have occurred when western Greenland temperatures have been significantly below average. In contrast, winters of reduced storminess have coincided with winters when air temperatures have been significantly above average in western Greenland. This reconstruction of winter storminess implies a relationship between chronologies of coastal erosion and the history of North Atlantic climate ‘see-saw’ dynamics with sustained winter storminess, and hence increased coastal erosion, taking place when the Icelandic low pressure cell is strongly anchored within the circulation of the northern hemisphere. Considered over the last ca. 2000 years, it would appear that winter storminess and climate-driven coastal erosion was at a minimum during the Medieval Warm Period. By contrast, the time interval from ca. AD 1420 until present has been associated with sustained winter storminess across the North Atlantic that has resulted in accelerated coastal erosion and sand drift. 相似文献
19.
20.
A characterization of extreme wave parameters during extratropical cyclones in the Northern hemisphere is made from WAM wave model hindcasts. In February 2007 two extratropical storms were observed in the North Atlantic and the wave fields associated with them are modeled in this paper. Wave buoy and satellite altimetry data were used to validate the WAM hindcast results. The distribution of the Benjamin–Feir index (BFI), kurtosis and the ratio of maximum wave height to significant wave height (abnormality index) around the eye of the two extratropical cyclones is studied. It is found that under these conditions the BFI and kurtosis are significantly larger mainly in the fourth quadrant and also when the wind direction is aligned with the wave propagation direction. In these regions the probability of occurrence of abnormal waves is higher. 相似文献