首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

2.
During 23–30 September 1997, a rare cyclonic storm has developed close to the Andhra coast, and it has later travelled parallel to coastline northward and finally crossed the land at Chittagong (22°N, 91°E) on 27 September. While translating along the east coast of India, it has produced heavy to very heavy rainfall on the coastal stations causing devastating floods. In this study, we made an attempt to understand the salient causes of this unique cyclone movement. We have analyzed daily fields of wind and relative humidity for 850, 700, 500 hPa and mean daily OLR data to understand the plausible reasons for its movement. The buoy data deployed by National Institute of Ocean Technology, Chennai, Viz. DS5 (15°N, 81°E), DS4 (19°N, 88°E) and SW7 (20°N, 86°E) were analyzed to understand the ocean–atmosphere interaction processes in the west Bay of Bengal during formation of the system. Analysis of OLR over the cyclonic storm region has revealed that the heavy rainfall areas coincide with low OLR (120–180 W m?2). The persistent southward movement of 500 hPa ridge on the eastern wedge of the system along with the steering current at 200 hPa has helped in maintaining the movement of the system parallel to the east coast of India during its life cycle.  相似文献   

3.
Both finite-element and finite-difference numerical models are applied to simulate storm surges and associated currents generated by tropical cyclones that struck the coast of Andhra Pradesh, located on the east coast of India. During a cyclone, the total water level at any location on the coast is made up of the storm surge, surge–wind wave interaction and the tide. The advanced circulation two-dimensional depth-integrated (ADCIRC-2DDI) model based on finite-element formulation and the two-dimensional finite-difference model of storm surges developed at IIT Delhi, hereafter referred as IITD storm surge model, are used. These models are driven by astronomical tides at the open ocean boundary and cyclonic asymmetric winds over the surface of the computational domain. Comparison of model simulated sea-surface elevations with coarse and finer spatial resolutions suggests that the grid resolution near the coast is very crucial for accurate determination of the surges in addition to the local bathymetry. The model underpredicts surges, and the peak surge location shifts more to the right of the landfall as the spatial resolution of the model becomes coarser. The numerical experiments also demonstrate that the ADCIRC model is robust over the IITD storm surge model for surge computations as the coastline is better represented in the former.  相似文献   

4.
Cyclone-generated surface waves are simulated using state-of-art SWAN (Simulating WAves Nearshore) model coupled with hydrodynamic model inputs. A severe cyclonic storm passed over the Arabian Sea during 4–9th November 1982 is selected from UNISYS track records. The cyclone lasted for nearly 6 days and subsided with a land fall at Gujarat coast, west coast of India. In this study, cyclonic wind fields are generated using a well-established relationship suggested by Jelesnianski and Taylor (1973). The associated water level variations due to storm surge and surge generated currents are simulated using POM (Princeton Ocean Model). The outputs are one-way coupled with the wave model SWAN for simulating wave parameters off Gujarat, north-east basin of Arabian Sea. An extensive literature review is carried out on the progress and methodology adopted for storm wave modelling and analysis. The results presented in this paper reveal the severity of the storm event and would be highly useful for assessing the extreme wave event/climate especially for the south coast of Gujarat.  相似文献   

5.
We studied the wave characteristics during the very severe cyclonic storm THANE which crossed the east coast of India between Puducherry and Cuddalore based on waves measured at a location in Bay of Bengal at 14 m water depth. Objective of the paper is to document the highest wave height measured in the nearshore waters of east coast of India. On 29 December 2011, cyclone passed within 77–315 km of the wave measurement location with maximum wind speed of 46.3 m/s (90 knots) and resulted in maximum wave height of 8.1 m. Maximum wave height recorded is 0.54 times the water depth, and the ratio of crest height to wave height of the highest wave recorded is 0.65. Maximum value of significant wave height estimated using the parametric wave model for deep-water conditions is 6.4 m, whereas the measured value is 6 m indicating that parametric wave model estimates the wave height reasonably well (within 8 % error) during the cyclone period.  相似文献   

6.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

7.
8.
A very severe cyclonic storm with wind speeds of over 240 km/h struck the coastal areas of Bangladesh in the full moon night of 29 April 1991. The path of the eye, close to the shore, raised a storm surge of unusual height, reportedly more than 9 m above the mean sea level, which devastated the offshore islands and the mainland coast. The damage to the physical infrastructure of the port of Chittagong and adjoining industrial area has been colossal, and recovery will take years. Death tolls from the cyclone, storm surge and its aftermath exceeded 145 000 making it one of the world's major natural disasters of this century.This paper is concerned with examining the magnitude and intensity of the disaster. It analyses how the people of Bangladesh, and the environment in which they live, were affected by the cyclone. A brief account is presented of loss of life and of the damage suffered in various sectors, including agriculture, industry, and physical infrastructure.The paper lays emphasis on the need of building a sufficient number of multipurpose cyclone shelters in the disaster-prone coastal areas of Bangladesh. Adequate measures should be taken for evacuating people from vulnerable areas and putting them into these shelters in the event of a cyclonic storm. Simplification of the current cyclone warning system is recommended.The difficulties of providing relief to the survivors are discussed. And finally, the need for improvement of the communication infrastructure in the coastal areas is highlighted.  相似文献   

9.
A procedure for cyclonic microzonation of coastal regions with the help of the cyclone track records is outlined using a sound method of statistical forecast and finding wind speed at a site with the help of standard wind field model. The procedure can be adopted for regions where directly measured wind speeds are scarce like, coastal regions of the developing and under developed countries. For the purpose of microzonation, the regions along with the available cyclone tracks are mapped using GIS. The area is then divided into a number of grids. The centre of the grid (site) is taken as the centre of the circle of influence. The cyclonic wind speeds at the site are estimated from the tracks falling within the influence circle. Distribution of the cyclonic wind speed at the site is then obtained from the estimated cyclonic wind speeds. Assuming the arrival of cyclone to be a Poisson process, a cyclone hazard curve, denoting the annual probability of exceedance versus cyclonic wind speed is determined. From the hazard curves drawn for different sites of the region, cyclonic microzonation map is prepared for different return periods of the cyclonic wind speed. The procedure is illustrated by applying it to microzone a very crucial coastal region of Andhra Pradesh in India, for which cyclone track records are available.  相似文献   

10.
Research efforts focused on assessing the potential for changes in tropical cyclone activity in the greenhouse-warmed climate have progressed since the IPCC assessment in 1996. Vulnerability to tropical cyclones becoming more pronounced due to the fastest population growth in tropical coastal regions makes it practically important to explore possible changes in tropical cyclone activity due to global warming. This paper investigates the tropical cyclone activity over whole globe and also individually over six different ocean basins. The parameters like storm frequency, storm duration, maximum intensity attained and location of formation of storm have been examined over the past 30-year period from 1977 to 2006. Of all, the north Atlantic Ocean shows a significant increasing trend in storm frequency and storm days, especially for intense cyclones. Lifetime of intense tropical cyclones over south Indian Ocean has been increased. The intense cyclonic activity over north Atlantic, south-west Pacific, north and south Indian Ocean has been increased in recent 15 years as compared to previous 15 years, whereas in the east and west-north Pacific it is decreased, instead weak cyclone activity has been increased there. Examination of maximum intensity shows that cyclones are becoming more and more intense over the south Indian Ocean with the highest rate. The study of the change in the cyclogenesis events in the recent 15 years shows more increase in the north Atlantic. The Arabian Sea experiences increase in the cyclogenesis in general, whereas Bay of Bengal witnesses decrease in these events. Shrinking of cyclogenesis region occurs in the east-north Pacific and south-west Pacific, whereas expansion occurs in west-north Pacific. The change in cyclogenesis events and their spatial distribution in association with the meteorological parameters like sea surface temperature (SST), vertical wind shear has been studied for Indian Ocean. The increase in SST and decrease in wind shear correspond to increase in the cyclogenesis events and vice versa for north Indian Ocean; however, for south Indian Ocean, it is not one to one.  相似文献   

11.
12.
Phenomenal storm surge levels associated with cyclones are common in East Coast of India. The coastal regions of Andhra Pradesh are in rapid stride of myriad marine infrastructural developments. The safe elevations of coastal structures need a long-term assessment of storm surge conditions. Hence, past 50 years (1949–1998), tropical cyclones hit the Bay are obtained from Fleet Naval Meteorological & Oceanographic Center, USA, and analyzed to assess the storm surge experienced around Kakinada and along south Andhra Pradesh coast. In this paper, authors implemented Rankin Hydromet Vortex model and Bretschneider’s wind stress formulation to hindcast the surge levels. It is seen from the hindcast data that the November, 1977 cyclone has generated highest surge of the order of 1.98 m. Extreme value analysis is carried out using Weibull distribution for long-term prediction. The results reveal that the surge for 1 in 100-year return period is 2.0 m. Further the highest surge in 50 years generated by the severe cyclone (1977) is numerically simulated using hydrodynamic model of Mike-21. The simulation results show that the Krishnapatnam, Nizampatnam and south of Kakinada have experienced a surge of 1.0, 1.5 and 0.75 m, respectively.  相似文献   

13.
Mishra  Manoranjan  Kar  Dipika  Debnath  Manasi  Sahu  Netrananda  Goswami  Shreerup 《Natural Hazards》2022,110(3):2381-2395

The tropical cyclones are very destructive during landfall, generating high wind speeds, heavy intensive rainfall, and severe storm surges with huge coastal inundations that have massive socioeconomic and ecological catastrophic effects on human beings and the economic well-being. The sizable ecological effects of cyclonic storms cannot be ignored because of the uncertainty of impact, intensity induced by a warming ocean, and sea level rise. The Super Cyclonic Storm Amphan which falls under the category five classifications under the scheme of the India Meteorological Department (IMD), on the basis the maximum sustained wind speeds gusting up to 168 km/h affected parts of West Bengal and Odisha in India, and south-west Bangladesh between May 16 and 20, 2020. In this work, we have focused on the coastal districts of Kendrapada, Bhadrak, Balasore in Odisha, Purba Medinipur, and South Twenty-Four Parganas in West Bengal, India and, Khulna, Barisal division of Bangladesh that have been seriously affected by the Super Cyclonic Storm Amphan. The objective of the study is to analyze the eco-physical assessment of tropical cyclone Amphan using geospatial technology. Therefore, shoreline change detection and enhance vegetation index have been used in this research work to systematically analyze the eco-physical impact parameters of Cyclonic Storm Amphan using ortho-rectified Landsat 8/OLI imagery and MODIS dataset of USGS with high spatial resolutions of 30–500 m. The result highlights that about 60.33% of the total transects of the study area was eroded, but only 24.99% of the total transects experienced accretion, and 14.68% of the total transects depicted stability. The scientific study will benefit coastal managers and policymakers in formulating action plans for coastal zone management, natural resilience, and sustainable future development.

  相似文献   

14.
Hazards associated with tropical cyclones are long-duration rotatory high-velocity winds, very heavy rain and storm tide. India has a coastline of about 7,516?km of which 5,400?km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. The India Meteorological Department (IMD) is the nodal government agency that provides weather services related to cyclones in India. However, IMD has not identified cyclone-prone districts following any specific definition though the districts for which cyclone warnings are issued have been identified. On the other hand, for the purpose of better cyclone disaster management in the country, it is necessary to define cyclone proneness and identify cyclone-prone coastal districts. It is also necessary to decide degree of hazard proneness of a district by considering cyclone parameters so that mitigation measures are prioritised. In this context, an attempt has been made to prepare a list of cyclone hazard prone districts by adopting hazard criteria. Out of 96 districts under consideration, 12, 45, 31 and 08 districts are in very high, high, moderate and low categories of proneness, respectively. In general, the coastal districts of West Bengal, Orissa, Andhra Pradesh and Tamil Nadu are more prone and are in the high to very high category. The cyclone hazard proneness factor is very high for the districts of Nellore, East Godawari, and Krishna in Andhra Pradesh; Yanam in Puducherry; Balasore, Bhadrak, Kendrapara and Jagatsinghpur in Orissa; and South and North 24 Parganas, Medinipur and Kolkata in West Bengal. The results give a realistic picture of degree of cyclone hazard proneness of districts, as they represent the frequency and intensity of land falling cyclones along with all other hazards like rainfall, wind and storm surge. The categorisation of districts with degree of proneness also tallies with observed pictures. Therefore, this classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through detailed study.  相似文献   

15.
Classifying inundation limits in SE coast of India: application of GIS   总被引:1,自引:0,他引:1  
A study on the possible inundation limit in SE coast of India was carried out using various physical, geological and satellite imageries. The coastal inundation hazard map was prepared for this particular region as it was affected by many cyclones, flooding, storm surge and tsunami waves during the last six decades. The results were generated using various satellite data (IRS-P6 LISS3; LANDSAT ETM; LANDSAT-5 ETM; LANDSAT MSS) and digital elevation models (ASTER GLOBAL DEM), and a coastal vulnerability index was generated for the entire coastal stretch of Nagapattinam region in SE coast of India. The coastal area which will be submerged totally due to a 1–5 m rise in water level due to any major natural disaster (tsunami or cyclone) indicates that 56–320 km2 will be submerged in this particular region. The results suggest that nearly 7 towns and 69 villages with 667,477 people will be affected and indicate that proper planning needs to be done for future development.  相似文献   

16.
Information on reflected surface gravity waves from the shoreline is required for understanding the coastal hydrodynamics. We have quantified the reflected swells (frequency band 0.045–0.12 Hz) from the west and east coast of India based on the spectral wave data derived from the directional waverider buoys. Reflection coefficient, ratio of the reflected and incident spectral energy, was used to quantify the reflected waves. Influence of the seasons, cyclone, relative depth, land/sea breeze, tides and tidal current on the reflected waves were examined. For the locations off the west coast of India, seasons have large impact on the reflection coefficient and were relatively less during the monsoon season due to the increase in incident wave energy. Locations off the east coast of India show almost the same reflection coefficient throughout the year and have no significant seasonal variations. The reflection coefficient off Puducherry was higher than that for other locations due to the low incident wave energy. The reflection coefficient was low during the cyclone period, but the reflected energy during cyclone was higher than that during the normal condition due to the high incident wave energy. High-energy reflected waves show large variation with tide due to the trapping and dissipation of reflected wave by bottom friction and this effect cause low reflection in deep water location than shallow water location. The reflection coefficient decreases with increase in relative depth off west coast of India.  相似文献   

17.
In this study a non-hydrostatic version of Penn State University (PSU) -- NationalCenter for Atmospheric Research (NCAR) mesoscale model is used to simulate thesuper cyclonic storm that crossed Orissa coast on 29 October 1999. The model isintegrated up to 123 h for producing 5-day forecast of the storm. Several importantfields including sea level pressure, horizontal wind and rainfall are compared with theverification analysis/observation to examine the performance of the model. The modelsimulated track of the cyclone is compared with the best-fit track obtained from IndiaMeteorological Department (IMD) and the track obtained from NCEP/NCAR reanalysis. The model is found to perform reasonably well in simulating the track and in particular, the intensity of the storm.  相似文献   

18.
This paper examines flood frequencies in three coastal sectors of Britain and analyses the associated storm tracks and their principal pathways. The results indicate that the east coast of Britain has suffered most floods over the last 200 years. The frequencies of flood incidents in the south and southwest coast of Britain have increased, particularly during the 20th century, whereas on the west coast flood frequencies have declined. Three distinctive pathways of storm track are identified, related to flood incidents in each coastal sector. A southern pathway in a corridor along the 55° N parallel is associated with flood incidents recorded on the south and southwest coast, whilst storms that are associated with floods on the west coast concentrate along the 60° N parallel. The relationship between the frequencies of floods and climatic variations needs to be explored further. However, the development of coastal settlements has certainly increased vulnerability, and hence the risk of flood disasters.  相似文献   

19.
Coastal flooding induced by storm surges associated with tropical cyclones is one of the greatest natural hazards sometimes even surpassing earthquakes. Although the frequency of tropical cyclones in the Indian seas is not high, the coastal region of India, Bangladesh and Myanmar suffer most in terms of life and property caused by the surges. Therefore, a location-specific storm surge prediction model for the coastal regions of Myanmar has been developed to carry out simulations of the 1975 Pathein, 1982 Gwa, 1992 Sandoway and 1994 Sittwe cyclones. The analysis area of the model covers from 8° N to 23° N and 90° E to 100° E. A uniform grid distance of about 9 km is taken along latitudinal and longitudinal directions. The coastal boundaries in the model are represented by orthogonal straight line segments. Using this model, numerical experiments are performed to simulate the storm surge heights associated with past severe cyclonic storms which struck the coastal regions of Myanmar. The model results are in agreement with the limited available surge estimates and observations.  相似文献   

20.
Bangladesh is highly susceptible to tropical cyclones. Unfortunately, there is a dearth of climatological studies on the tropical cyclones of Bangladesh. The Global Tropical Cyclone Climatic Atlas (GTCCA) lists historical storm track information for all the seven tropical cyclone ocean basins including the North Indian Ocean. Using GIS, tropical cyclones that made landfall in Bangladesh during 1877–2003 are identified and examined from the climatological perspective. For the convenience of study, the coast of Bangladesh is divided into five segments and comparisons are made among the coastal segments in terms of cyclone landfall and vulnerability. There is a large variability in the year-to-year occurrence of landfalling tropical cyclones in Bangladesh. Most of the tropical cyclones (70%) hit in the months of May–June and October–November generally show the well-known pattern of pre- and post-monsoon cyclone seasons in that region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号