首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mono estuary is an infilled, microtidal estuary located on the wave-dominated Bight of Benin coast which is subject to very strong eastward longshore drift. The estuarine fill comprises a thick unit of lagoonal mud deposited in a ‘central basin’between upland fluvial deposits and estuary-mouth wave-tide deposits. This lagoonal fill is capped by organic-rich tidal flat mud. In addition to tidal flat mud, the superficial facies overlying the ‘central basin’fill include remnants of spits resting on transgressive/washover sand, an estuary-mouth association of beach, shoreface, flood-tidal delta and tidal inlet deposits, and a thin sheet of fluvial sediments deposited over tidal flat mud. After an initial phase of spit intrusion over the infilled central basin east of the present Mono channel, the whole estuary mouth became bounded by a regressive barrier formed from sand supplied by the Volta Delta during the middle Holocene eustatic highstand. Barrier progradation ceased late in the Holocene following the establishment of an equilibrium plan-form shoreline alignment that allowed through-drift of Volta sand to sediment sinks further downdrift. Over the same period, accretion, from fluvially supplied sediments, of the estuarine plain close to the limit of spring high tides, or, over much of the lower valley, into a fluvial plain no longer subject to tidal flooding, induced marked meandering of the Mono and its tidal distributaries in response to confinement of much of the tidal prism to these channels. The process resulted in erosion of spit/washover and regressive barrier sand, and in reworking of the tidal flat and floodbasin deposits. The strong longshore drift, equilibrium shoreline alignment and the year-round persistence of a tidal inlet maintained by discharge from the Mono and from Lake Ahémé have resulted in a stationary barrier that is reworked by a mobile inlet. The Mono example shows that advanced estuarine infill may result in considerable facies reworking, obliteration of certain facies and marked spatial imbrication of fluvial, estuarine and wave-tide-deposited facies, and confirms patterns of sedimentary change described for microtidal estuaries on wave-influenced coasts. In addition, this study shows that local environmental factors such as sediment supply relative to limited accommodation space, and strong longshore drift, which may preclude accumulation of sediments in the vicinity of the estuary mouth, may lead to infilled equilibrium or near-equilibrium estuaries that will not necessarily evolve into deltas.  相似文献   

2.
Studies on surface water characters of the estuarine environment of Iraq, northwestern Arabian Gulf, define three subdivisions of salinity: oligohaline, polyhaline, and euhaline. Textural analysis reveals that surface sediments covering the bottom are composed of six distinct classes: silty clay, clayey silt, sand-silt-clays, clayey sand, silty sand and sand. Five physiographic subdivisions are identified and described fluvial-estuarine, tidal mud flats (subtidal flat, lower intertidal flat, upper intertidal flat, supratidal flat), sand bars, Abdallah-Shetana channel and submerged estuarine distributary channel and bar systems. The content of organic matter in the sediments ranges from 0.24-3.69 per cent by weight. High values were recorded from the Abdallah-Shetana channel while lower values are confined to sand bars and submerged estuarine distributary channel and bar systems. Carbonates, quartz, feldspar, and halite are the main mineral constituents of the non-clay grade sediments; carbonates are present mainly as low-magnesium calcite followed by dolomite and high-magnesium calcite. Aragonite is present only in trace amounts. Both detrital and biogenic sources are suggested for low-magnesium calcite. A detrital source for dolomite and a biogenic source for high-magnesium calcite and aragonite are proposed.  相似文献   

3.
Akimiski Strait is a wide (17–20 km), shallow, emergent (0.70 cm per century) waterway in James Bay. It is localized in a saddle of a Paleozoic reef track, which has been enhanced and molded by Pleistocene glaciers. Drumlinoid ridges form the till cores of shoals and islets of the strait. The boundary conditions of the strait change throughout the year, as it is covered by ice for six months. During spring break-up the strait remains clogged with ice at its northern approach for several weeks, and acts as a large tidal inlet. It is during this period that most of the fluvial sediments are carried to sea. Other sediments are obtained by erosion of the Pleistocene tills and Holocene subtidal clays and silts exposed in nearshore areas. Resuspension of nearshore material is achieved through the action of wind-driven, short choppy waves and ice scour. Tides are the most important process for the redistribution of sediments along the coast, both flooding onshore and flooding and ebbing into and out from the strait generating locally powerful (2 m s?1) reversing currents. Ice rafting and ice pushing are important processes in this frigid environment, particularly in upwind sides of shaols, and at/or near river mouths.Different intertidal sedimentary sequences develop as functions of sediment supply and exposure of the environments to ice, currents and waves. The eastern shores and the southern shoals of the strait develop pebble lags over till, covered by thin (5–20 cm) drapes of silty sand trapped and protected from erosion by algae. In these shores and in emerging small islands significant sedimentation (1–1.5 m thick) occurs in the marshes where the suspended load of tidal waters is trapped by vegetation. The western shores of the strait receive considerable amounts of sediment from large rivers and are affected by strong tidal longshore currents. Thick (3–4 m) and narrow tidal flats and marshes develop on the maincoast. The shoals of the northern part of the strait have characteristic sediments. Those near the western shore have thin (up to 80 cm) tidal silty sand deposits, locally heavily burrowed by Macoma balthica. Those strung across the northern approach to the strait have well-developed, thin, coarse sand dune fields, indicating a prevalent ebb flow out of the strait.  相似文献   

4.
Uplifted during the 1964 Alaskan earthquake, extensive intertidal flats around Middleton Island expose 1300 m of late Cenozoic (Early Pleistocene) Yakataga Formation glaciomarine sediments. These outcrops provide a unique window into outer shelf and upper slope strata that are otherwise buried within the south‐east Alaska continental shelf prism. The rocks consist of five principal facies in descending order of thickness: (i) extensive pebbly mudstone diamictite containing sparse marine fossils; (ii) proglacial submarine channel conglomerates; (iii) burrowed mudstones with discrete dropstone layers; (iv) boulder pavements whose upper surfaces are truncated, faceted and striated by ice; and (v) carbonates rich in molluscs, bryozoans and brachiopods. The carbonates are decimetre scale in thickness, typically channellized conglomeratic event beds interpreted as resedimented deposits on the palaeoshelf edge and upper slope. Biogenic components originated in a moderately shallow (ca 80 m), relatively sediment‐free, mesotrophic, sub‐photic setting. These components are a mixture of parautochthonous large pectenids or smaller brachiopods with locally important serpulid worm tubes and robust gastropods augmented by sand‐size bryozoan and echinoderm fragments. Ice‐rafted debris is present throughout these cold‐water carbonates that are thought to have formed during glacial periods of lowered sea‐level that allowed coastal ice margins to advance near to the shelf edge. Such carbonates were then stranded during subsequent sea‐level rise. Productivity was enabled by attenuation of terrigenous mud deposition during these cold periods via reduced sedimentation together with active wave and tidal‐current winnowing near the ice front. Redeposition was the result of intense storms and possibly tsunamis. These sub‐arctic mixed siliciclastic‐carbonate sediments are an end‐member of the Phanerozoic global carbonate depositional realm whose skeletal attributes first appeared during late Palaeozoic southern hemisphere deglaciation.  相似文献   

5.
A. G. PLINT 《Sedimentology》1983,30(5):625-653
The Bracklesham Formation is of Middle Eocene age and occurs throughout the Hampshire Basin of southern England. The basin is elongated east-west and filled with Lower Tertiary sediments. Its southern margin is marked by either large, northward-facing monoclines, or faults, both of which underwent differential movement, with uplift of the southern side throughout the Middle Eocene. The Bracklesham Formation, which is up to 240 m thick, shows pronounced lateral facies changes with dominantly marine sediments in the east passing to alluvial sediments in the west. Four principal sedimentary environments: marine, lagoonal, estuarine and alluvial are distinguished. Marine sediments comprise six facies including offshore silty clays and glauconitic silty sands, beach and aeolian dune sands, and flint conglomerates formed on pebble beaches. Offshore sediments predominate in the eastern part of the basin, as far west as Alum Bay, where they are replaced by nearshore sediments. Lagoonal sediments comprise four facies and formed in back-barrier lagoons, coastal marshes and, on occasions, were deposited over much of the basin during periods of low salinity and restricted tidal motion. Five estuarine facies represent tidal channels, channel mouth-bars and abandoned channels. These sediments suggest that much of the Bracklesham Formation was deposited under micro- to meso-tidal conditions. Alluvial sediments dominate the formation to the west of Alum Bay. They comprise coarse to fine sands deposited on the point-bars of meandering rivers, interbedded with thick sequences of laminated interchannel mudstones, deposited in marshes, swamps and lakes. Extensive layers of ball clay were periodically deposited in a lake occupying much of the alluvial basin. In alluvial areas, fault movement exposed Mesozoic rocks along the southern margin of the basin, the erosion of which generated fault-scarp alluvial fan gravels. Locally, pisolitic limestone formed in pools fed by springs emerging at the faulted Chalk-Tertiary contact. In marine areas, flint pebbles were eroded from coastal exposures of chalk and accumulated on pebble beaches and in estuaries. From other evidence it is suggested that older Tertiary sediments were also reworked. The Bracklesham Formation is strongly cyclic and was deposited during five marine transgressions, the effects of which can be recognized throughout the basin in both marine and alluvial areas. Each of the five transgressive cycles is a few tens of metres thick and contains little evidence of intervening major regression. The cycles are thought to represent small-scale eustatic sea-level rises (‘paracycles’) superimposed upon a major transgressive ‘cycle’ that began at the base of the Bracklesham Formation, following a major regression, and was terminated, at the top of the Barton Formation by another major regression. This major cycle can be recognized world-wide and may reflect a period of rapid northward extension of the mid-Atlantic ridge.  相似文献   

6.
通过对冀北坳陷中新元古界下马岭组进行剖面实测,对下马岭组底部的沥青砂岩进行室内薄片鉴定和扫描电镜分析,观察与分析了下马岭组沥青砂岩的出露分布特征,镜下研究了此砂岩的碎屑颗粒和填隙物的组分特征和磨圆、分选、粒度等结构特征,依据岩石学特征、粒度分析系列参数等研究了沥青砂岩的沉积环境。结果表明此砂岩为成分与结构成熟度均高的纯石英砂岩和石英砂岩,硅质与沥青质填隙、沥青含量达5%~15%,细粒为主,分选好到极好。粒度分析是本段松散状沥青砂有效环境判别标志。综合分析认为下马岭沥青砂岩形成于无障壁海岸体系的滨浅海环境,形成于前滨到临滨的海相高能环境,可能的沉积位置是前滨下部到中上临滨;此砂岩主要来自临滨潮下高能带的沉积物、含部分前滨下部沉积物、也夹少量潮汐水道沉积物。不同剖面位置所处的沉积环境不同,凌源地区和平泉地区为临滨带的中上部的水下高能带沉积为主,宽城地区为临滨带上部沉积和前滨下部沉积,凌源地区和宽城地区也包含少量的潮汐水道沉积。  相似文献   

7.
An excellent section in the Welzow-Süd open-cast lignite mine in Lower Lusatia, eastern Germany, provided a rare opportunity to study a small (5 m deep), buried subglacial meltwater channel of Saalian age. The channel is steep-sided and distinctly U-shaped. It is separated from undeformed outwash deposits in which it is incised by a sharp erosional contact and it is filled with meltwater sand and till. The till was possibly squeezed into the channel from the adjacent ice/bed interface. Directly beneath the channel, there is a partly truncated diapir of clayey silt, evidencing sediment intrusion into the channel from below. During channel formation, the pressure gradient was oriented from the surrounding sediments into the channel, so that the channel served as a drainage conduit for groundwater from the adjacent subglacial aquifer. The substratum consists largely of sandy aquifers with a total thickness of about 100 m, separated by two aquitards. Channel formation was initiated when hydraulic transmissivity of the bed did not suffice to evacuate all the subglacial meltwater as groundwater flow. As the Welzow-Süd channel belongs to a dense network of subglacial channels in eastern Germany, temporary ice-sheet instability in this region prior to channel formation seems possible.  相似文献   

8.
The most extensive Jurassic marine transgression in North America reached its maximum limits during the Oxfordian Age. At this time, siliciclastic sediments were being brought into the North American seaway from an uplifted zone to the west. Within this setting, complexes of sand ridges and coquinoid sands layers were deposited. Coquinoid sandstones appear to fill erosional scours and were interpreted as channel fills. Re-evaluation of these features in the light of recently discovered attributes of modern shelf sediments and processes has produced a revised model of coquinoid sand deposition in this setting. Coquinoid sandstones which fill ‘channel-like’ scours in the Oxfordian (Upper Jurassic) rocks of central Wyoming and south-central Montana, appear to have formed through the migration of sand waves across the crests of inner shelf sand ridges during periods of storm and tidal flow. Erosion in the zone of flow reattachment in the troughs between sand waves resulted in the development of shell lags. Migration of these scour zones as the sand waves advanced resulted in the deposition of sheet-like coquinoid sandstone bodies. Sand waves crossing the ridge crest tended to migrate more slowly and to be overstepped by later sand waves. Sand wave troughs thus buried have channel-like geometries with apparent epsilon bedding.  相似文献   

9.
The marine geology of Port Phillip is described in detail, based on data from seismic profiling, vibrocoring and grab sampling. Three major unconsolidated facies can be distinguished: sands and muddy sands peripheral to the present coastline, muds covering the major central region, and channel fills of muds and sands. The first two facies units result from an increase in wave sorting towards the coast, reworking of Tertiary and Quaternary sandstone outcrops around the coast, and a dominant mud supply from river sources into the central area. The distribution and thicknesses of the unconsolidated facies have been augmented by a shallow‐seismic program that reveals the thicknesses of the modern sediments overlying an older surface comprised of consolidated clays and sandy clays of Pleistocene or older age. In central Port Phillip, muds and sands up to 27 m‐thick have infilled Pleistocene channels cut into underlying consolidated units. Sediments immediately above the channel bases show characteristic seismic patterns of fluvial deposition. The presence of peat deposits together with gas phenomena in the water column suggest organic breakdown of channel‐fill deposits is releasing methane into the bay waters. Outside the channel areas, carbon‐14 dating indicates that the unconsolidated sediments largely post‐date the last glaciation sea‐level rise (<6500 a BP), with an early Holocene period of rapid deposition, similar to other Australian estuaries. Stratigraphic and depositional considerations suggest that the undated channel‐fill sequences correlate with the formation of cemented quartz‐carbonate aeolianite and barrier sands on the Nepean Peninsula at the southern end of Port Phillip. Previous thermoluminescence dating of the aeolianites suggests that channel‐fill sequences B, C and D may have been deposited as fluvial and estuarine infills over the period between 57 and 8 ka. The eroded surface on the underlying consolidated sediments is probably the same 118 ka age as a disconformity within the Nepean aeolianites. Further estuarine and aeolianite facies extend below the disconformity to 60 m below sea‐level, and may extend the Quaternary depositional record to ca 810 ka. Pliocene and older Tertiary units progressively subcrop below the Quaternary northwards up the bay.  相似文献   

10.
The Mesoproterozoic Lower Tombador Formation is formed of shallow braided fluvial, unconfined to poorly-channelized ephemeral sheetfloods, sand-rich floodplain, tide-dominated estuarine, and shallow marine sediments. Lowstand braided fluvial deposits are characterized by a high degree of channel amalgamation interbedded with ephemeral, intermediate sheetflood sandstones. Sand-rich floodplain sediments consist of intervals formed by distal sheetflood deposits interbedded with thin layers of eolian sandstones. Tide-dominated estuarine successions are formed of tide-influenced sand-bed braided fluvial, tidal channel, tidal sand flat and tidal bars. Shallow marine intervals are composed of heterolithic strata and tidal sand bars. Seismic scale cliffs photomosaics calibrated with vertical sections indicate high lateral continuity of sheet-like depositional geometry for fluvial–estuarine successions. These geometric characteristics associated with no evidence of incised-valley features nor significant fluvial scouring suggest that the Lower Tombador Formation registers deposition of unincised fluvial and tide-dominated systems. Such a scenario is a natural response of the interplay between sedimentation and fluctuations of relative sea level on the gentle margins of a sag basin. This case study indicates that fluvial–estuarine successions exhibit the same facies distributions, irrespective of being related to unincised or incised-valley systems. Moreover, this case study can serve as a starting point to better understand the patterns of sedimentation for Precambrian basins formed in similar tectonic settings.  相似文献   

11.
基于海洋区域地质调查获取的1 438个粒度数据,利用Folk分类方法将中国东部海域表层沉积物划分为砂质粉砂、粉砂质砂、粉砂、砂、砂质泥、泥质砂、泥7种沉积物类型,阐述了不同沉积物类型的粒度组成和参数特征.其中,砂质粉砂、粉砂质砂和粉砂是3种最主要的沉积物类型,分别占样品总数的34.70%、24.20%和15.51%.粉砂质砂呈条带状分布在研究区的南部且向北延伸.粉砂主要分布在长江口-浙闽沿岸、渤海西部和南黄海中北部.砂主要分布在东海外陆架、扬子浅滩和苏北浅滩、朝鲜湾等海区,其中在东海外陆架海区分布最广.影响沉积物分布的主要因素有物源、水动力环境以及水深、地形、地貌等.晚第四纪冰期旋回中海平面变化和海洋环流控制陆源沉积物的入海通量和陆架沉积体系的发育过程.综合沉积物物源供给、海洋环流、冰后期海平面变化过程,基于Folk分类的动力学属性和表层沉积物类型分布,将中国东部海域表层沉积物分布划分为河口沉积、陆架泥质沉积、潮流沉积以及残留沉积等分区.不同沉积分区的形成机制和影响因素差异显著,反映出在中国东部陆架的特殊地形影响下,不同海平面时期陆源碎屑物质的运移过程.   相似文献   

12.
辽东湾北部浅海区泥沙输送及其沉积特征   总被引:16,自引:1,他引:16  
苗丰民  李淑媛 《沉积学报》1996,14(4):114-121
根据实测资料,本文定量分析了辽东湾北部泥沙输送及其分布,并对辽河三角洲沉积区划作了初步讨论。研究表明本区泥沙以纵向搬运为特征。双台子河以西来沙和辽河西水道入海泥沙是区域东部拦门沙体和浅滩发育的主导因素。汛季大潮期,泥沙自西向东运移落淤在河口及毗邻浅水域;小潮期,泥沙除向东扩散外,大部泥沙向海方搬运。调查区可划分六个现代沉积作用区,即潮坪沉积区、辽河水下三角洲细粒沉积区、河口沙洲沉积区、波浪潮流冲蚀沉积区、河口冲积沉积区以及潮汐水道沉积区。  相似文献   

13.
通过对交杯四沙表层现代沉积考察,分析了滩面沉积微地貌类型,并结合粒度分析和成分分析,探讨不同微地貌沉积特征,进而讨论了交杯四沙的形成过程。研究结果表明:交杯四沙表层发育有低潮线以下、低潮位波浪冲洗带、高潮位冲洗带、风暴潮冲洗带、滩顶冲越带、滨后冲越带、冲越扇中部、冲越扇前缘斜坡以及分流间湾区等9个微地貌单元,代表了9个微相分区。交杯四沙滩面主要以粉砂和细砂为主,整体上分选性中到差,矿物成分主要为石英和黏土矿物。交杯四沙东侧是磨刀门主河槽,以径流为主;西侧沿白藤海、灯笼沙至三灶岛水道以潮流为主。交杯三沙以南,四砂以北构成了分流间凹地环境。交杯四沙以南为东南向的波浪作用带。交杯四沙和其他交杯沙系列沙体具有相同的形成过程,首先由河槽底流将拦门沙沉积物向西搬运沉积形成浅滩,浅滩受潮流和波浪的改造其平面形态呈酒杯状,浅滩的东南面受东南向波浪的作用,前坡遭受侵蚀,在后坡产生堆积,由此沙滩逐渐向陆迁移,先后形成交杯一沙、二沙、三沙和四沙,交杯一沙、二沙和三沙已经合并成陆。随时间的推移,交杯四沙也将与交杯三沙相接成陆,新的交杯五沙有望形成,磨刀门西侧浅滩区将演变成由一系列反曲沙脊和潮滩相间而成的三角洲“滩-脊”平原。  相似文献   

14.
The textural and geochemical aspects of the sediments of a tropical mangrove ecosystem have been studied and discussed. The sediments are characterized by the abundance of silt and sand with minor amounts of clay. The mean size of the sediment ranges from 0.205 mm to 0.098 mm (fine to very fine grained sand). The sediments are very poorly sorted, negatively to very negatively skewed, and platy to extremely leptokurtic in nature. The organic carbon content of the sediments ranges from 0,33% to 4.93%, which is controlled by the particle size of the sediments. The CaCO3 content is five times the enrichment of organic carbon. This enhanced CaCO3 content of the mangrove sediments might be a result of the abundance of shell fragments in the sediments. The shell mining activities in the estuarine bed adjoining the Kumarakam mangroves also contribute a substantial amount of lime muds to the mangrove area, which in turn add CaCO3 to the sediments. The relative concentrations of heavy metals are Fe > Mn > Cr > Zn > Ni > Cu. All heavy metals other than Fe show an increase in concentration compared to the other parts of the estuarine bed. Cluster analysis indicates that the contents of organic C, Fe and Mn have a marked bearing on the Cr, Zn, Ni, and Cu levels of the mangrove sediments.  相似文献   

15.
Analysis of heavy-mineral distribution in modern sediments of Willapa Bay, Washington, indicates a dominance of two mineralogic assemblages, one with approximately equivalent amounts of hornblende, orthopyroxene and clinopyroxene, the other dominated by clinopyroxene. The hornblende-orthopyroxene-clinopyroxene suite is derived from the Columbia River, which discharges into the ocean a short distance south of the bay. The clinopyroxene suite is restricted in modern sediments to sands in rivers flowing into the bay from the east. The heavy-mineral distributions suggest that sand discharged from the Columbia River, borne north by longshore transport, and carried into the bay by tidal currents accounts for most of the sand within the interior of Willapa Bay.Three heavy-mineral assemblages are present in the surrounding Pleistocene deposits; two of these are identical to the modern assemblages described above. These heavy-mineral assemblages reflect the relative influence of tidal and fluvial processes on the Late Pleistocene deposits; their relative influences are consistent with those inferred on the basis of sedimentary structures and stratigraphic relations in about two-thirds of the samples examined. The anomalies can be explained by recycling of sand from older deposits. The persistence of the two heavy-mineral assemblages suggests that the pattern of estuarine sedimentation in Late Pleistocene deposits closely resembled that of the modern bay.The third heavy-mineral suite, dominated by epidote, occurs in a few older Pleistocene units. On the north side of the bay, the association of this suite with southwest-directed foresets in crossbedded gravel indicates derivation from the northeast, perhaps from an area of glacial outwash. The presence of this suite in ancient estuarine sands exposed on the east side of the bay suggests that input from this northerly source may have intermittently dominated bay deposition in the past.  相似文献   

16.
17.
Major part of the Holocene Ganges-Brahmaputra delta occupies the southern and southwestern part of Bangladesh with a smaller part extending beyond the international boundary in the west. Five facies assemblages are documented in the lower deltaic plain in five different depositional environments: levee or levee complex, bil or depression, abandoned meander belt, interdistributary plain and estuarine plain. The thickness of the Holocene sediments ranges from 30 m to 70 m in the deltaic plain, usually floored by the Pleistocene stiff clays, with the exception of the abandoned meander belt deposit where Holocene channel sand deposited directly on the Pleistocene sand. Radiocarbon dates indicate that low-rate sedimentation has occurred in the northern part, where 4-6 m thick sediments were deposited since the mid-Holocene, whereas 10-30 mthick sediments were deposited in the southern part during the same span of time. In addition, significant coastal subsidence (3 mm/a on average), added by sea-level rise (1.5 mm/a, conservative rate) occurs in the study area, which serves as a negative factor in degrading the coastal plain of Bangladesh in the future, while taking into consideration the weaker sedimentation in the area.  相似文献   

18.
山西二叠系河流沉积特征   总被引:3,自引:0,他引:3  
山西西部二叠系沉积环境以河流为主,除曲流河外,还有为数不多的辫状河与交织河。曲流河以发育曲流沙坝、洪泛平原和决口扇为其特征。辫状河发育河道沙坝沉积,洪泛平原沉积不太发育。交织河以河道稳定为特征,伴有沼泽沉积,是理想的成煤环境。  相似文献   

19.
泥河湾盆地东部郝家台地区的台儿沟东剖面主要出露地层为更新统和上新统,剖面顶部为厚9.4 m的马兰黄土和古土壤,剖面中部由更新统郝家台组和泥河湾组构成,剖面下部为上新统蔚县组。郝家台组和泥河湾组为三角洲平原、三角洲前缘和少量前三角洲亚相沉积组合,其中三角洲平原亚相可分为分支河道、分支间湾、天然堤、沼泽和淡水湖泊5个微相,由发育大型板状斜层理和底冲刷面构造的粗砂夹砾石透镜体,含钙质结核的透镜状黄褐色中 细砂以及富含炭屑的深色粘土等共同构成;三角洲前缘亚相则由水下分支河道、支流间湾、河口砂坝和末端砂坝构成,以发育底冲刷面构造并夹有细砾石透镜体的细中粒砂、小型板状斜层理细砂以及分选好且质纯的细砂等组合为特征;前三角洲亚相相对不发育,主要由浅灰色粘土以及灰绿色、灰黑色粘土夹钙质结核构成。蔚县组主要由滨湖亚相和浅湖亚相构成,其中前者为多种颜色的并发育泥裂和滑塌构造的粘土、粉砂组合,局部夹有透镜状砂砾层,底冲刷面发育;后者主要由粉砂、粘土组合构成,局部可见由砂泥交互构成的透镜状层理。古水流分析结果表明,上新统蔚县组沉积物源区位于泥河湾盆地NE侧,更新统泥河湾组和郝家台组碎屑沉积物主要来自于NE和NW方向,而泥河湾组底部约15 m厚沉积物除了来自NE方向外,还有部分沉积物来自SSW方向物源区。表明自上新世以来,泥河湾盆地周边具有北高南低古地理格局,从而为盆地提供丰富的碎屑沉积物。  相似文献   

20.
The analyses of 248 samples have revealed that the composition and distribution patterns of sediments within the Albemarle estuarine system (AES) represent a complex interaction between multiple sediment sources, basin morphology and evolution, and associated estuarine processes. Three sediment end-member types are dominant: sand, peat, and organic-rich mud (ORM). Throughout the AES, shallow perimeter platforms and associated sediment-bank shorelines are eroded into Pleistocene units. Shoreline recession supplies sand to the platforms and mud to the central basins; these sediments mix with suspended sediment from the fluvial drainages. Swamp forest-peat and marsh-peat shorelines are actively eroding and supply fine organic detritus to produce the dominant ORM sediment in the central basins. Perimeter platform sands grade into ORM on the platform slope. ORM constitutes about 70% of the benthic habitats within the AES and has an average composition of 76.2% inorganic mud, 13.1% sand, and 10.7% organic matter. The characteristics of ORM greatly affect the benthic community structure, chemical quality of the sediments, and the water quality of the estuary. ORM readily moves in and out of the water column in response to natural and anthropogenic activities, affecting water column turbidity and trace and major element geochemistry. Organic matter and clay minerals in ORM are chemically reactive and interact with the water column to adsorb or release contaminants, nutrients, and gases. Thus, ORM acts as both a sink and source for many different chemical constituents in the water column and plays important, but poorly understood, functions in the physical and chemical dynamics of estuarine ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号