首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用TRMM/TMI资料提取地表层湿度信息试验   总被引:1,自引:0,他引:1  
模拟分析了地表层湿度反演过程中地表及大气各种因素(卫星扫描角、地表粗糙度、地表植被覆盖和大气)对反演结果的影响情况;应用正演模拟技术得到了利用TMI低频10GHz通道微波极化比反演地表层湿度信息时,斜率和截距随像元植被覆盖度可调的反演方程;确定了反演方程中斜率、截距系数随像元植被覆盖度变化的对数关系和线性关系;反演技术中综合应用了多种途径获取到的被动微波像元中动态的植被覆盖信息;尝试了将这些因子用于地表层湿度反演的可行性;对于反演结果,研究工作中利用地表HUBEX外场观测资料进行了对比分析,得到了空间分布特征和时间演变趋势比较一致的对比分析结果。  相似文献   

2.
The 52 papers in this special issue make use of airborne and/or ground data to deal with questions such as: 1) the estimation of effective soil temperature and vegetation water content from remote sensing data; 2) the impact of physical parameters such as soil texture, topography, vegetation type. and surface roughness on surface soil moisture retrieval; 3) the transferability of current retrieval equations across scales ranging from tens of kilometers; and 4) issues related to downscaling of low-resolution passive-microwave observations of surface soil moisture.  相似文献   

3.
综合主动和被动微波数据监测土壤水分变化   总被引:12,自引:1,他引:12  
李震  郭东华  施建成 《遥感学报》2002,6(6):481-484
微波遥感测量土壤水分的方法主要分主动和被动两种,它们都是基于干燥土壤和水体之间介电常数的巨大差异。估算植被覆盖土壤表面土壤水分必须要考虑地表粗糙度和植被覆盖影响的问题。植被覆盖土壤表面的后向散射包括来自植被的体散射,来自地表的面散射和植被与地表间的交互作用散射项。本研究建立了一个半经验公式模型,用来计算体散射项,综合时间序列的主动和被动微波数据,消除植被覆盖的影响,估算地表土壤水分的变化状况。并应用1997年美国SGP‘97综合实验中的机载800m分辨辐射计ESTAR数据计算表面反射系数,综合Radarsat的SCAN-SAR数据得到体散射项,然后,由NOAA/AVHRR和TM计算得到的NDVI值加权分配50m分辨率的体散射项,最后计算50m分辨率的表面反射系数的变化值,从而得到土壤水分的变化情况,验证数据表明该计算结果与实测值一致。  相似文献   

4.
The Land Parameter Retrieval Model (LPRM) has been successfully applied to retrieve soil moisture from space-borne passive microwave observations at C-, X-, or Ku-band and high incidence angles (50 $^{circ}$–55$^{circ}$ ). However, LPRM had never been applied to lower angles or to L-band observations. This letter describes the parameterization and performance of LPRM using aircraft and ground data from the National Airborne Field Experiment 2005. This experiment was undertaken in November 2005 in the Goulburn River catchment, which is located in southeastern Australia. It was found that model convergence could only be achieved with a temporally dynamic roughness. The roughness was parameterized according to incidence angle and soil moisture. These findings were integrated in LPRM, resulting in one uniform parameterization for all sites. The parameterized LPRM correlated well with field observations at 5-cm depth ($r = 0.93$ based on all sites) with a negligible bias and an accuracy of 0.06 $hbox{m}^{3}cdot hbox{m}^{-3}$. These results demonstrate comparable retrieval accuracies as the official SMOS soil-moisture retrieval algorithm (L-MEB), but without the need for the ancillary data that are required by L-MEB. However, care should be taken when using the proposed dynamic roughness model as it is based on a limited data set, and a more thorough evaluation is necessary to test the validity of this new approach to a wider range of conditions.   相似文献   

5.
An Effective Model to Retrieve Soil Moisture from L- and C-Band SAR Data   总被引:1,自引:0,他引:1  
This study investigated an appropriate method for soil moisture retrieval from radar images and coincident ground measurements acquired over bare soil and sparsely vegetated regions. The adopted approach based on a single scattering integral equation method (IEM) was developed to establish the relationship between backscatter coefficient and surface soil parameters including volumetric soil moisture content and surface roughness. The performance of IEM in 0–7.6 cm is better than that in 0–20 cm. Moreover, IEM can simulate correctly the backscatter coefficients only for the root mean square (RMS) height s < 1.5 cm at C-band and s < 2.5 cm at L-band by using an exponential correlation function and for s > 1.5 cm at C-band and s > 2.5 cm at L-band by using Gaussian function. However, due to the difficulties involved in the parameterization of soil surface roughness, the estimated accuracy is not satisfactory for the inversion of IEM. This paper used a combined roughness parameter and Fresnel reflection coefficient to develop an empirical model. Simulations were performed to support experimental results and to highlight soil moisture content and surface roughness effects in different polarizations. Results showed that a good agreement was found between the IEM simulations and the SAR measurements over a wide range of soil moisture and surface roughness characteristics. The model had a significant operational advantage in soil moisture retrieval. The correlation coefficients were 77.03 % at L-band and 81.45 % at C-band with the RMSEs of 0.515 and 0.4996 dB, respectively. Additionally, this work offered insight into the required application accuracy of soil moisture retrieval at a large area of arid regions.  相似文献   

6.
表面粗糙度是影响土壤在微波波段发射和散射辐射的主要因素之一,也是微波遥感研究与应用的重要参量。由于微波后向散射还受介电特性、穿透深度等因素的影响,在微波遥感应用中往往难以单独考虑介质表面粗糙度,给参数估算与反演带来了一定困难。在可见光、近红外波段,粗糙度作为土壤表面重要的结构参数之一,直接影响着土壤的二向反射分布特征。因此,本文尝试利用光学多角度观测信息,反演土壤表面粗糙度。基于地表二向反射几何光学模型,假设裸土像元由随机分布于平坦表面的土壤团粒组成,将团粒近似为半椭球体,建立裸露土壤表面二向反射模型,模拟不同粗糙度条件下土壤表面像元的二向反射分布特征。进一步尝试采用多角度观测数据反演模型,估算土壤团粒的几何结构参数,进而计算土壤表面均方根高度,作为表面粗糙度的衡量指标。地面实测多角度数据的初步验证结果表明,多角度光学遥感估算土壤表面粗糙度的方法是可行的。  相似文献   

7.
The 46-$hbox{km}^{2}$ Livingstone Creek Catchment in southeastern Australia was flown with a passive microwave airborne remote sensor four times throughout the three-week National Airborne Field Experiment in 2006, with a spatial resolution of $sim$200 m. Both continuous and discrete measurements of soil moisture were taken to help with interpretation of results. The catchment was experiencing extreme drought conditions leading up to the experiment, and as a result, ground cover in the catchment was minimal with many paddocks consisting of sparse dry stubble and grass. During the experiment period of November 2006, 30 mm of rainfall occurred, with the catchment going from parched dry conditions to surface wet conditions and back to dry conditions again in a short period of time. Changes in moisture responses observed by the airborne passive microwave sensor were field verified to reflect the different geology, soil, and landform elements of the catchment. Consequently, this study suggests that passive microwave remote sensing has potential as a tool to assist with soil mapping, through detecting changes in soil moisture spatial and temporal patterns.   相似文献   

8.
闪电河流域水循环和能量平衡遥感综合试验   总被引:3,自引:3,他引:0  
遥感试验是进行遥感原理的验证、遥感模型与反演方法的发展、遥感产品的真实性检验,推动卫星计划的论证实施及其观测在地球系统科学中应用的重要途径.闪电河流域水循环和能量平衡遥感综合试验以滦河上游闪电河流域为核心试验区,以地球表层系统的水循环过程和能量平衡为研究对象,旨在通过天—空—地—体化的观测手段,针对不同典型地表类型开展...  相似文献   

9.
The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was $-$0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.   相似文献   

10.
An important research direction in advancing higher spatial resolution and better accuracy in soil moisture remote sensing is the integration of active and passive microwave observations. In an effort to address this objective, an airborne instrument, the passive/active L-band sensor (PALS), was flown over two watersheds as part of the cloud and land surface interaction campaign (CLASIC) conducted in Oklahoma in 2007. Eleven flights were conducted over each watershed during the field campaign. Extensive ground observations (soil moisture, soil temperature, and vegetation) were made concurrent with the PALS measurements. Extremely wet conditions were encountered. As expected from previous research, the radiometer-based retrievals were better than the radar retrievals. The standard error of estimates (SEEs) of the retrieved soil moisture using only the PALS radiometer data were 0.048 m3/m3 for Fort Cobb (FC) and 0.067 m3/m3 for the Little Washita (LW) watershed. These errors were higher than typically observed, which is likely the result of the unusually high soil moisture and standing water conditions. The radar-only-based retrieval SEEs were 0.092 m3/m3 for FC and 0.079 m3/ m3 for LW. Radar retrievals in the FC domain were particularly poor due to the high vegetation water content of the agricultural fields. These results indicate the potential for estimating soil moisture for low-vegetation water content domains from radar observations using a simple vegetation model. Results also showed the compatibility between passive and active microwave observations and the potential for combining the two approaches.  相似文献   

11.
For the soil moisture retrieval from passive microwave sensors, such as ESA’s Soil Moisture and Ocean Salinity (SMOS) and the NASA Soil Moisture Active and Passive (SMAP) mission, a good knowledge about the vegetation characteristics is indispensable. Vegetation cover is a principal factor in the attenuation, scattering and absorption of the microwave emissions from the soil; and has a direct impact on the brightness temperature by way of its canopy emissions. Here, brightness temperatures were measured at three altitudes across the TERENO (Terrestrial Environmental Observatories) Rur catchment site in Germany to achieve a range of spatial resolutions using the airborne Polarimetric L-band Multibeam Radiometer 2 (PLMR2). The L-band Microwave Emission of the Biosphere (L-MEB) model which simulates microwave emissions from the soil–vegetation layer at L-band was used to retrieve surface soil moisture for all resolutions. A Monte Carlo approach was developed to simultaneously estimate soil moisture and the vegetation parameter b’ describing the relationship between the optical thickness τ and the Leaf Area Index (LAI). LAI was retrieved from multispectral RapidEye imagery and the plant specific vegetation parameter b′ was estimated from the lowest flight altitude data for crop, grass, coniferous forest, and deciduous forest. Mean values of b’ were found to be 0.18, 0.07, 0.26 and 0.23, respectively. By assigning the estimated b′ to higher flight altitude data sets, a high accuracy soil moisture retrieval was achieved with a Root Mean Square Difference (RMSD) of 0.035 m3 m−3 when compared to ground-based measurements.  相似文献   

12.
目标分解技术在植被覆盖条件下土壤水分计算中的应用   总被引:6,自引:0,他引:6  
施建成  李震  李新武 《遥感学报》2002,6(6):412-415
目标分解技术利用协方差距阵的特征值和特征矢量,将极化雷达后向散射测量值分解为单向散射,双向散射和交叉极化散射三个分量,并建立了植被覆盖地表的一阶物理离散散射模型。通过分解的各分量与该模型的比较,建立重轨极化雷达测量数据估算土壤水分的方法,采用Washita‘92实验区多时相全极化L波段JPL/AIRSAR图像雷达测量数据,利用分解的散射测量值,我们评估了在同一入射角,单频(L波段),多路条件下,分解理论在进行土壤水分估计时减少植被影响的能力。结果表明利用目标分解理论和重轨极化雷达数据可以估算植被覆盖区域土壤水分的变化情况。  相似文献   

13.
陆地表面粗糙度和土壤湿度多维参数同时反演的遗传算法   总被引:3,自引:0,他引:3  
用遗传算法,从多角度后向散射观测值同时反演陆地表面粗糙度(小尺度起伏方差与相关长度、大尺度起伏坡度)和土壤体湿度的多维特征性参数。粗糙陆地表面散射用Kirchhoff近似的稳相法与微扰法相结合的双尺度模型计算,以构造代价函数。遗传算法反演结果与车载多角度遥感时的陆地实测值作了比较,取得了十分良好的结果。为遗传算法在遥感反演中的新应用提供了实例。  相似文献   

14.
被动微波土壤水分反演模型研究   总被引:3,自引:0,他引:3  
在分析现有地表辐射模型的基础上,分析了被动微波遥感的辐射传输方程,并且对辐射传输过程的主要因素进行了分析.最后对地面辐射进行了介绍,并针对被动微波AMSR数据提出了地表土壤水分反演的模型.  相似文献   

15.
16.
本文提出了一种基于CYGNSS数据的星载GNSS-R土壤湿度反演方法。首先,基于CYGNSS数据提取地表反射率参数,联合SMAP数据中提取的植被光学厚度、地表粗糙度和温度等辅助信息,初步构建了土壤湿度反演理论模型,并利用神经网络模型确定了土壤湿度反演的精细数学模型;然后,将该模型处理获得的土壤湿度以35%为分界点,利用本文提出的阶段函数模型提高反演精度,并使用2018年10月—2019年5月的CYGNSS数据,获得了全球范围内星载GNSS-R土壤湿度;最后,通过与SMAP提供的土壤湿度数据进行对比,评估了本文提出的星载GNSS-R土壤湿度反演方法的有效性,并对获取的星载GNSS-R土壤湿度进行了时间序列分析。结果表明,本文提出的土壤湿度反演方法的结果与SMAP土壤湿度具有良好的一致性,且随时间变化的趋势也相符合,为高精度土壤湿度反演提供了一种思路。  相似文献   

17.
基于改进热惯量模型的表层土壤水反演研究   总被引:1,自引:0,他引:1  
针对改进热惯量模型需要通过对地面实测的温度进行插值推算地表最高温度,而玛多县属高原地区,较难获取实测数据,利用MODIS地表温度产品的4个瞬时值计算日平均地表温度,结合修正普适性单通道算法反演HJ-1B地表温度,推算出地表最高温度,从而减少了改进热惯量模型对地面观测数据的依赖,进而利用HJ-1B数据反演了玛多县土壤水。结果表明:本文方法可行,能够获得较高分辨率的土壤水空间分布结果,拓宽了HJ-1B数据的应用范围。  相似文献   

18.
Soil moisture estimation is considered to be one of the important parameters in hydrological studies. The extraction of information on near surface soil moisture from the synthetic aperture radar is well established. The available Advanced Synthetic Aperture Radar (ASAR) data onboard ENVISAT with multi-incidence and multi-polarization mode for soil moisture estimation on sloping terrain was investigated. Empirical models were developed to estimate near surface soil moisture in the fallow agricultural fields by incorporating the effects of surface roughness using multi-incidence angle ASAR data. Medium incidence angle (IS-4) with VV polarization of ASAR data had higher correlation coefficient to volumetric soil moisture content. The ratio of medium (IS-4) to high incidence (IS-6) angle could further reduce the effect of surface roughness. The effect of topography on the radar data is taken care by calculating local incidence angle derived from ASTER DEM data. The VV polarization in the sloping terrain provided better results in comparison to VH polarization.  相似文献   

19.
In an area in southern Tunisia diurnal trends of bare soil surfaces have been investigated. The study area comprises two main parts: the footslopes and the playas.

The diurnal variation of the bidirectional reflectance factor (BRF) in nadir direction on the footslopes is dominated by the effect of roughness. Maximum BRF is found with small solar zenith angles due to decrease in shadow related to surface roughness. For Landsat overpass it implies that the normal ground reflectance for a bare surface on the footslopes at identical surface conditions is up to 10% lower in December (solar zenith angle 63 degrees) than in June (28 degrees). Band ratios on the footslopes hardly change with variation of zenith angle.

The diurnal variation in the playas is dominated by moisture. Asymmetric daily curves, with the lowest reflectance in the morning have been found. Four phenomena are reported which can be held responsible for this effect. This daily effect of moisture is weather dependent and may obscure long time changes of TM signal. In band ratios even with TM band 7 the diurnal moisture change can hardly be detected.  相似文献   

20.
基于双天线全球导航卫星系统反射技术(global navigation satellite system reflectometry,GNSS-R),建立了两个修正地表粗糙度影响的土壤湿度反演模型——解析模型和人工神经网络模型,并以GPS L1 C/A码为例建立了GNSS-R土壤湿度仿真平台,仿真分析了地表粗糙度对两个模型反演精确度的影响。结果表明,当地表均方根高度大于0.010 m时,必须对解析模型进行粗糙度修正。粗糙度影响修正结果显示,小粗糙度情况下修正的解析模型取得了良好的结果,但对于大粗糙度有一定局限性。在均方根高度大于0.025 m时,进行土壤粗糙度修正前,人工神经网络模型精度比解析模型提高了36.83%~72.36%。进行修正后,人工神经网络模型的精度比解析模型提高了42.86%~54.40%。人工神经网络模型在修正前后取得了相近的精度,无修正的人工神经网络模型精度比有修正的解析模型精度仍提高了35.83%~53.48%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号