首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
In spite of detailed geological investigations of the Dharwar craton since the 1890s, its principal lithological units, structure and chronology remain contentious. Important new work on lithostratigraphy, basin development, structure, geochemistry and geochronology has led to wide-ranging speculation on the Late Archaean plate tectonic setting. Much of the speculation is based on uniformitarian models which contrast with a recent proposal that the evolution of the craton was controlled by gravity-driven processes with no crustal shortening.  相似文献   

2.
Palaeoproterozoic mafic dike swarms of different ages are well exposed in the eastern Dharwar craton of India. Available U-Pb mineral ages on these dikes indicate four discrete episodes, viz. (1) ~2.37 Ga Bangalore swarm, (2) ~2.21 Ga Kunigal swarm, (3) ~2.18 Ga Mahbubnagar swarm, and (4) ~1.89 Ga Bastar-Dharwar swarm. These are mostly sub-alkaline tholeiitic suites, with ~1.89 Ga samples having a slightly higher concentration of high-field strength elements than other swarms with a similar MgO contents. Mg number (Mg#) in the four swarms suggest that the two older swarms were derived from primary mantle melts, whereas the two younger swarms were derived from slightly evolved mantle melt. Trace element petrogenetic models suggest that magmas of the ~2.37 Ga swarm were generated within the spinel stability field by ~15–20% melting of a depleted mantle source, whereas magmas of the other three swarms may have been generated within the garnet stability field with percentage of melting lowering from the ~2.21 Ga swarm (~25%), ~2.18 Ga swarm (~15–20%), to ~1.89 Ga swarm (~10–12%). These observations indicate that the melting depth increased with time for mafic dike magmas. Large igneous province (LIP) records of the eastern Dharwar craton are compared to those of similar mafic events observed from other shield areas. The Dharwar and the North Atlantic cratons were probably together at ~2.37 Ga, although such an episode is not found in any other craton. The ~2.21 Ga mafic magmatic event is reported from the Dharwar, Superior, North Atlantic, and Slave cratons, suggesting the presence of a supercontinent, ‘Superia’. It is difficult to find any match for the ~2.18 Ga mafic dikes of the eastern Dharwar craton, except in the Superior Province. The ~1.88–1.90 Ga mafic magmatic event is reported from many different blocks, and therefore may not be very useful for supercontinent reconstructions.  相似文献   

3.
The Archaean-Proterozoic Dharwar craton has many recorded occurrences of diamondiferous kimberlites. Reports of kimberlite emplacement in parts of the tectonically complex eastern Dharwar craton and a significant density contrast between kimberlites and the host peninsular gneisses motivated us to conduct gravity studies in the Narayanpet-Irladinne area of the eastern Dharwar craton. This region is contiguous with the Maddur-Narayanpet kimberlite that lies to its north, while the river Krishna lies to its south. From observed association of reported kimberlites in the Maddur-Narayanpet field with subsurface topography of the assumed three-layer earth section obtained by Bouguer gravity modelling, we developed a subsurface criterion for occurrence of kimberlites in the present study area. Using this criterion, five potential zones for kimberlite localization were identified in the Narayanpet-Irladinne region, eastern Dharwar craton.  相似文献   

4.
The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South India. For this study, the chromitite rock samples were collected from Jambur, Tagadur, Bhakatarhalli, Ranganbetta and Byrapur in the NSB. Petrography and ore microscopic studies on chromite show intense cataclasis and alteration to ferritchromite. The ferritchromite compositions are characterized by higher Cr number (Cr/[Cr+Al]) (0.68–0.98) and lower Mg number (Mg/[Mg+Fe]) (0.33–0.82) ratios in ferritchromite compared to that of parent chromite. The formation process for the ferritchromite is thought to be related to the exchange of Mg, Al, Cr, and Fe between the chromite, surrounding silicates (serpentines, chlorites), and fluid during serpentinization.  相似文献   

5.
J. P. Callot  X. Guichet   《Tectonophysics》2003,366(3-4):207-222
We develop two simple models for simulating the combination of magnetic sub-fabrics related to magma flow in dykes. The basic assumptions are (i) the petrofabric is representative of the flow fabric, and (ii) the petrofabric is composed of S/C-type structures related to flow. The first model consists of summing the magnetic tensors of two identical sub-fabrics, differing solely by their relative rotation. This model accounts for the possible change of the macroscopic magnetic lineation from a flow-related fabric to a lineation situated at the geometric intersection between the two sub-fabrics. Such a result is obtained in the case of oblate to highly oblate sub-fabric ellipsoids. The second model integrates the effect of very oblate grains of variable orientations into calculating the shape controlled magnetic tensor of each sub-fabric, and emphasizes the possible under-estimation of fabric superposition due to microscopic disordering. The magma fluxes along the East Greenland volcanic margin are illustrated by the flow pattern within the major dyke swarm. The magmatic flow vectors inferred from the imbrication of magnetic foliation at the dyke margins are primarily horizontal. The classic use of magnetic lineation can lead to contradictory results, giving flow vectors perpendicular to the flow directions. The magnetic lineation is situated close to the zone axis of magnetic foliation planes over a wide range of scales throughout the dyke swarm, suggesting that the contradiction may arise from the association of several textural domains at the sample scale. Forward modelling of macroscopic magnetic fabrics using the first model yields good agreement with the measured magnetic fabric of the East Greenland dykes. Our results, which are applicable to strained sedimentary rocks, highlight the possible misuse of the magnetic lineation due to combination of magnetic textures. The exchange between a microscopic lineation, i.e. mineralogical lineation, and a macroscopic lineation, i.e. intersection lineation, is particularly expected for dykes that generally bear oblate magnetic textures.  相似文献   

6.
Anisotropy of magnetic susceptibility (AMS) data are used as a tool to determine strain variations in different parts of the Banded Iron Formations (BIFs) of the Bonai Synclinorium, eastern India. AMS data of 88 cylindrical cores drilled from 29 samples collected from the limb and hinge parts of mesoscopic scale folds as well as different parts of the entire synclinorium are presented. It is found that the samples from limbs of small-scale folds and also from limbs of the regional scale synclinorium have higher degrees of anisotropy than the hinges. This is inferred to indicate that the limbs accommodated higher strain than the hinges. AMS orientation data are analysed in conjunction with field data. It is concluded that the magnetic fabric developed in the limbs as well as hinges of the BIFs of the study area is related to deformation and is not a manifestation of sedimentary fabric.  相似文献   

7.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Anisotropy of magnetic susceptibility (AMS) and paleomagnetic methods have been applied on the middle Miocene–Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan in order to identify the invisible regional deformation sense as well as the intensity of deformation of sediments. The southern sequences of the two peninsulas were subjected to syn-sedimentary deformation of folding and faulting generated in compressional tectonics. A previous result of the AMS experiment on the sequences shows a development of a strong magnetic lineation. Thus, it is conceivable that the lineation had to be generated during the process of deformation, and in a direction perpendicular to the shortening. However, the orientation of the magnetic lineations is inconsistent among the different tectonic domains in the southern sequence. The paleomagnetic declination in each domain reveals a clockwise rotation in various degrees. Reconstructed directions of the magnetic lineations show a consistent pattern in the east–west direction, suggesting that the sedimentary sequence was subjected to a north-southward compression. In contrast, the compressive direction of the sediment cover on the Pliocene–Pleistocene sequence reveals a northwest direction. Our results suggest that the Philippine Sea Plate had been subducting northward during the middle Miocene–Pliocene, and changed its direction during the Pliocene.  相似文献   

9.
In this work we analyse and check the results of anisotropy of magnetic susceptibility (AMS) by means of a comparison with palaeostress orientations obtained from the analysis of brittle mesostructures in the Cabuérniga Cretaceous basin, located in the western end of the Basque–Cantabrian basin, North Spain. The AMS data refer to 23 sites including Triassic red beds, Jurassic and Lower Cretaceous limestones, sandstones and shales. These deposits are weakly deformed, and represent the syn-rift sequence linked to basins formed during the Mesozoic and later inverted during the Pyrenean compression. The observed magnetic fabrics are typical of early stages of deformation, and show oblate, triaxial and prolate magnetic ellipsoids. The magnetic fabric seems to be related to a tectonic overprint of an original, compaction, sedimentary fabric. Most sites display a NE–SW magnetic lineation that is interpreted to represent the stretching direction of the Early Cretaceous extensional stage of the basin, without recording of the Tertiary compressional events, except for sites with compression-related cleavage.Brittle mesostructures include normal faults, calcite and quartz tension gashes and joints, related to the extensional stage. The results obtained from joints and tension gashes show a dominant N–S to NE–SW, and secondary NW–SE, extension direction. Paleostresses obtained from fault analysis (Right Dihedra and stress inversion methods) indicate NW–SE to E–W, and N–S extension direction. The results obtained from brittle mesostructures show a complex pattern resulting from the superposition of several tectonic processes during the Mesozoic, linked to the tectonic activity related to the opening of the Bay of Biscay during the Early Cretaceous. This work shows the potential in using AMS analysis in inverted basins to unravel its previous extensional history when the magnetic fabric is not expected to be modified by subsequent deformational events. Brittle mesostructure analysis seems to be more sensitive to far-field stress conditions and record longer time spans, whereas AMS records deformation on the near distance, during shorter intervals of time.  相似文献   

10.
徐海军  金振民  欧新功 《岩石学报》2006,22(7):2081-2088
在常温常压条件下获得了中国大陆科学钻探(CCSD)主孔331块岩心的磁化率各向异性(AMS)数据,并建立了主孔100—2000m的体积磁化率和AMS连续剖面。数据统计分析显示,主孔100—2000m岩心的磁化率(κ)介于1.05×10-4SI和0.12SI之间,几何平均值为1.855×10-3SI;磁化率各向异性度(Pj)介于1.04和2.10之间,几何平均值为1.155。该井段出露的主要岩石类型有榴辉岩、退变质榴辉岩、角闪岩、正片麻岩、副片麻岩和蛇纹石化橄榄岩,它们的垂向分布特征控制着磁化率剖面的变化。主孔的超高压变质岩石在折返过程中普遍经历了强烈的角闪岩相退变质作用的改造。其磁化率特征也发生相应的改变。蛇纹石化橄榄岩具有很高的磁化率(8.58×10-2SI)和各向异性度(1.335)。这主要源于橄榄岩蛇纹石化过程中产生的大量磁铁矿。榴辉岩、退变质榴辉岩和角闪岩代表榴辉岩从新鲜到完全退变质的三个阶段,它们的磁化率和磁化率各向异性度分别为榴辉岩(1.28×10-3SI、1.077)、退变质榴辉岩(3.19×10-3SI、1.206)、角闪岩(1.02×10-3SI、1.104)。正片麻岩的磁化率和各向异性度分别为5.34×10-3SI和1.167。副片麻岩的磁化率和各向异性度分别为3.46×10-4SI和1.150。对58个变形岩石的AMS测试结果显示,其磁化率椭球体的主轴方向与岩石组构基本一致,即最大磁化率主轴κ1平行矿物线理,最小磁化率主轴κ3垂直岩石面理。同时,这些变形岩石的AMS椭球体多呈现明显的压扁状特征,反映超高压变质岩石在折返过程中处于强烈挤压变形的构造应力环境,为苏鲁超高压变质板片的挤出折返模式提供了佐证。该研究成果也为超高压变质岩石地区磁学研究、地球物理调查和测井成果的解释提供了重要的实验约束。  相似文献   

11.
We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb–Cu–Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.  相似文献   

12.
In the West Sudetes, northeastern Bohemia Massif, geochronometry provides evidence for repeated episodes of rapid cooling that contrasts sharply with an absence of structural evidence for significant tectonic exhumation by crustal extension. Instead, high-grade assemblages of the Orlica–Snieznik Complex have a regional sub-horizontal foliation and sub-horizontal lineations that trend parallel to narrow sub-vertical shear zones containing exhumed high-pressure assemblages. Mesoscopic petrofabrics combined with anisotropy of magnetic susceptibility (AMS) data from amphibolite facies to migmatitic meta-sedimentary and meta-igneous rocks reveal remarkably consistent average lineations that plunge shallowly to the SSW on both steep and sub-horizontal NNE-trending planar fabrics. The dominant SSW–NNE fabric orientation is parallel to the Bohemia–Brunia suture, which marks a major boundary along the eastern margin of the massif. The shape of the AMS ellipsoid is predominantly oblate, revealing flattened fabrics, with only local prolate ellipsoids. We envisage that the continental Brunian indentor operated as a rigid backstop and allowed the migmatized lower crustal orogenic root to be exhumed along the Bohemian margin shortly following terminal arc collision. Sub-vertical extrusion of the orogenic root was arrested in the mid-crust, where the lower ductile crust was laterally overturned at the base of rigid upper crustal blocks. Upon reaching the crustal high-strength lid the exhumed ductile mass of continental material laterally spread sub-parallel to the margin, underwent subsequent supra-Barrovian metamorphism, and quickly cooled. The application of AMS techniques to high-grade metamorphic rocks in concert with macroscopic structural observations is a powerful approach for resolving the deformation history of a terrane where visible rock fabrics can be tenuous.  相似文献   

13.
The Koraput Alkaline Complex (KAC) lies on the NE-SW trending Sileru Shear Zone (SSZ) separating the Proterozoic Eastern Ghats Province from the Archaean Indian craton. The core of the KAC is made of hornblende gabbro, which is rimmed by a band of nepheline syenite in the east and syenodiorite in the west. The timing of magmatism with respect to the SSZ is disputed. The KAC was deformed during emplacement, and a magmatic foliation related to the syn-emplacement deformation, D 1 , is present in the gabbroic core. The dominant D 2 -related field fabric strikes NESW and is penetrative in parts of the gabbro and marginal lithologies. E-W trending D 3 shear zones cut across the complex. Distinct textural domains resulted from strain partitioning during deformation. Parts of the complex with magmatic textures constitute Domain-1, while D 2 and D 3 fabric zones comprise Domains-2 and 3 respectively. Temperatures in the KAC initially decreased following D 1 , but increased through D 2 and D 3 . Anisotropy of magnetic susceptibility (AMS) studies show that the magnetic fabric generally follows S 1 in Domain-1. While the magnetic fabric in Domain-2 is dominantly parallel to S 2 , some of it parallels S 1 . The latter is a relict D 1 fabric that is recognized from AMS analysis but is obliterated in the field, which confirms that the KAC pre-dates the SSZ. The response of magnetic fabrics to temperature and implications of the study for Indo-Antarctica amalgamation are discussed.  相似文献   

14.
A theoretical model predicting how anisotropy of magnetic susceptibility (AMS) and vesicle fabrics are modified by shear stress resolved on the dike walls prior to the final cooling of magma is developed for vertical dikes. The resulting fabrics are asymmetric with respect to initial fabrics assumed to be symmetric. Application of this model together with collected data on magma flow direction, dike propagation direction and mechanism, and shear sense, allow us to interpret dike fabrics in terms of shear resolved on the dike walls during intrusion (en echelon arrangement, offsetting, and dike curvature). The interpretation of AMS and vesicle fabrics of the margins of four dikes shows a reasonable agreement with the proposed theoretical models, suggesting that asymmetric fabrics can be used to infer magma flow and may provide valuable information on the shear resolved on the dike walls during intrusion.  相似文献   

15.
正The paleogeographic position of India within the Columbia supercontinent during Paleoproterozoic era is still uncertain because of very few reliable,high-quality palaeomagnetic data with precise geochronology.Here we  相似文献   

16.
The petrology and geochemistry of some new occurrences of Mesoproterozoic diamondiferous hypabyssal-facies kimberlites from the Chigicherla, Wajrakarur-Lattavaram and Kalyandurg clusters of the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are reported. The kimberlites contain two generations of olivine, and multiple groundmass phases including phlogopite, spinel, calcite, dolomite, apatite, perovskite, apatite and rare titanite, and xenocrysts of eclogitic garnet and picro-ilmenite. Since many of the silicate minerals in these kimberlites have been subjected to carbonisation and alteration, the compositions of the groundmass oxide minerals play a crucial role in their characterisation and in understanding melt compositions. While there is no evidence for significant crustal contamination in these kimberlites, some limited effects of ilmenite entrainment are evident in samples from the Kalyandurg cluster. Geochemical studies reveal that the WKF kimberlites are less differentiated and more primitive than those from the Narayanpet kimberlite field (NKF), Eastern Dharwar craton. Highly fractionated (La/Yb = 108–145) chondrite-normalised distribution patterns with La abundances of 500–1,000 × chondrite and low heavy rare earth elements (HREE) abundances of 5–10 × chondrite are characteristic of these rocks. Metasomatism by percolating melts from the convecting mantle, rather than by subduction-related processes, is inferred to have occurred in their source regions based on incompatible element signatures. While the majority of the Eastern Dharwar craton kimberlites are similar to the Group I kimberlites of southern Africa in terms of petrology, geochemistry and Sr–Nd isotope systematics, others show the geochemical traits of Group II kimberlites or an overlap between Group I and II kimberlites. Rare earth element (REE)-based semi-quantitative forward modelling of batch melting of southern African Group I and II kimberlite source compositions involving a metasomatised garnet lherzolite and very low degrees of partial melting demonstrate that (1) WKF and NKF kimberlites display a relatively far greater range in the degree of melting than those from the on-craton occurrences from southern Africa and are similar to that of world-wide melilitites, (2) different degrees of partial melting of a common source cannot account for the genesis of all the EDC kimberlites, (3) multiple and highly heterogeneous kimberlite sources involve in the sub-continental lithospheric mantle (SCLM) in the Eastern Dharwar craton and (4) WKF and NKF kimberlites generation is a resultant of complex interplay between the heterogeneous sources and their different degrees of partial melting. These observations are consistent with the recent results obtained from inversion modelling of REE concentrations from EDC kimberlites in that both the forward as wells as inverse melting models necessitate a dominantly lithospheric, and not asthenospheric, mantle source regions. The invading metasomatic (enriching) melts percolating from the convecting (asthenosphere) mantle impart an OIB-like isotopic signature to the final melt products.  相似文献   

17.
We describe in detail the deformation structures and textures of a large-scale landslide body that developed in the Betto-dani Valley in northern central Japan. We studied the shape-preferred orientation of clasts and clay flakes and the development of internal shear planes within the slip zone of the landslide. The slip has an average rate of 5–10 cm/year under the overburden pressure of approximately 1.6 MPa; these values are similar to those of the proto-decollement zone of the Nankai accretionary prism in SW Japan. The anisotropy of magnetic susceptibility of samples obtained from the slip zone reveals that the long axes of clay flakes define an imbricate structure. The slip was due to a long-term periodical creep, which occurs during the thaw seasons with an average slip rate of 0.16–0.32 μm/min. During the creep, the long axes of grains including clay flakes in the slip zone are developed from parallel to perpendicular to the slip direction. The observed textures provide a clue to elucidate the deformation textures and process in the decollement zone of the Nankai prism.  相似文献   

18.
采用微区激光探针40Ar-39Ar定年方法, 对华北桑干地区高压基性麻粒岩中变质石榴石和斜长石直接进行了原位微区年代测定。石榴石变斑晶是高压麻粒岩相变质作用形成的矿物,石榴石周围后成合晶反应边组合中的斜长石是石榴石减压分解的产物。石榴石斑晶的40Ar-39Ar等时线年龄为2510 Ma, 证明高压变质作用发生在太古宙末。斜长石40Ar-39Ar等时线年龄为1968Ma, 代表石榴石在中压麻粒岩相条件下分解的时代。它们之间年龄相差大于500Ma, 说明高压麻粒岩可能没有经历近等温减压的PT轨迹。后成合晶组合很可能代表中压麻粒岩相变质作用的叠加。这一结果对探讨华北克拉通桑干地区早期地壳的构造演化具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号