首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Detailed fieldwork and new extensive 14C dating of residual channel infillings provide data for the reconstruction of the Late‐glacial channel downcutting and incision history of the Venlo–Boxmeer lower reach of the River Meuse (= Maas) in the southern Netherlands. Within a period of 500–1300 yr after Late‐glacial climatic amelioration, the Meuse responded to increased discharges and decreased sediment supply by adjusting the width/depth ratio of its channels. Two main phases of channel downcutting are followed by two main phases of floodplain lowering and narrowing, indicating net floodplain degradation by the fluvial system as a non‐linear response to Late‐glacial and Early Holocene climate change. Some 1300 yr after initial late‐glacial warming, channels downcut rapidly during the Early Bølling (13.3–12.5 kyr BP) and adopted a high‐sinuosity meandering style. Channel downcutting paused around 11.9 kyr BP, possibly in response to rising groundwater levels and/or the Older Dryas cooling event. Between 11.9 and 11.3 kyr BP a new floodplain was formed. Then, lateral erosion took place and initiated a first phase of 2.6 m floodplain lowering during the Late Allerød. Gradual climate deterioration during the Allerød progressively broke up soils and vegetation cover, from 11.3 to 10.9 kyr BP. The Meuse gradually adjusted to an increased ratio of sediment supply over transport capacity through higher width/depth ratios. Main channels became shallower and adopted a low‐sinuosity pattern, finally culminating in a braided river system during the Younger Dryas. The final Holocene warming resulted, within 500 yr, in renewed rapid channel downcutting by a single low‐sinuosity channel during the Early Preboreal, followed by a second phase of 1.8–2.8 m floodplain lowering. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Stanford, S. D. 2009: Onshore record of Hudson River drainage to the continental shelf from the late Miocene through the late Wisconsinan deglaciation, USA: synthesis and revision. Boreas, 10.1111/j.1502‐3885.2009.00106.x. ISSN 0300‐9483. Fluvial and glacial deposits in New Jersey, Long Island, and the Hudson valley provide a record of Hudson River drainage since the late Miocene. Late Miocene fluvial deposits record southerly flow across the emerged inner New Jersey shelf. In the late Miocene–early Pliocene this drainage incised, shifted southwesterly, and discharged to the shelf south of New Jersey. During late Pliocene or Early Pleistocene glaciation, discharge to the shelf in the New York City area was established. This drainage incised and stabilized in the Early and Middle Pleistocene and remained open during pre‐Wisconsinan (Oxygen Isotope Stage 6? (OIS‐6?)) and late Wisconsinan (OIS‐2) glacial advances. During late Wisconsinan retreat, moraine deposits dammed the valley at the Narrows to form Lake Albany. From 19 to 15.5 kyr BP (all dates in 14C yr), Hudson drainage was directed eastward into the Long Island Sound lowland. Drainage of Lake Wallkill into Lake Albany at 15.5 kyr BP breached the Narrows dam and initiated the unstable phase of Lake Albany, which was controlled by eroding spillways, first on the moraine dam, then on emerged lake‐bottom in the mid‐Hudson valley. Marine incursion between 12 and 11 kyr BP limited fluvial incision of the lake bottom, stabilizing the Quaker Springs, Coveville, and upper Fort Ann spillways. Lowering sea level between 11 and 10 kyr BP allowed incision from the upper to lower Fort Ann threshold. Sediment eroded by lake outflows between 15 and 10.5 kyr BP was trapped in the glacially deepened lower valley. Little inland sediment reached the shelf after 20 kyr BP.  相似文献   

3.
Using glacial rebound models we have inverted observations of crustal rebound and shoreline locations to estimate the ice thickness for the major glaciations over northern Eurasia and to predict the palaeo-topography from late MIS-6 (the Late Saalian at c. 140 kyr BP) to MIS-4e (early Middle Weichselian at c. 64 kyr BP). During the Late Saalian, the ice extended across northern Europe and Russia with a broad dome centred from the Kara Sea to Karelia that reached a maximum thickness of c. 4500 m and ice surface elevation of c. 3500 m above sea level. A secondary dome occurred over Finland with ice thickness and surface elevation of 4000 m and 3000 m, respectively. When ice retreat commenced, and before the onset of the warm phase of the early Eemian, extensive marine flooding occurred from the Atlantic to the Urals and, once the ice retreated from the Urals, to the Taymyr Peninsula. The Baltic-White Sea connection is predicted to have closed at about 129 kyr BP, although large areas of arctic Russia remained submerged until the end of the Eemian. During the stadials (MIS-5d, 5b, 4) the maximum ice was centred over the Kara-Barents Seas with a thickness not exceeding c. 1200 m. Ice-dammed lakes and the elevations of sills are predicted for the major glacial phases and used to test the ice models. Large lakes are predicted for west Siberia at the end of the Saalian and during MIS-5d, 5b and 4, with the lake levels, margin locations and outlets depending inter alia on ice thickness and isostatic adjustment. During the Saalian and MIS-5d, 5b these lakes overflowed through the Turgay pass into the Aral Sea, but during MIS-4 the overflow is predicted to have occurred north of the Urals. West of the Urals the palaeo-lake predictions are strongly controlled by whether the Kara Ice Sheet dammed the White Sea. If it did, then the lake levels are controlled by the topography of the Dvina basin with overflow directed into the Kama-Volga river system. Comparisons of predicted with observed MIS-5b lake levels of Komi Lake favour models in which the White Sea was in contact with the Barents Sea.  相似文献   

4.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Paired stable oxygen isotope and Mg/Ca analyses in calcite tests of the mixed-layer-dwelling planktic foraminifer Globigerinoides ruber has been used to reconstruct equatorial Indian Ocean δ18O of seawater (δ18Osw) over the last ~137 thousand years. On the basis of ice-volume-corrected δ18Osw (δ18Osw–ivc), relative changes in sea surface salinity (SSS) have been estimated. The SSS estimates suggest three episodes of higher SSS (131–113 thousand years before present (kyr BP), 62–58 kyr BP, and 30–24 kyr BP) within the last glacial period as compared with the present. SSS comparison between interglacial episodes reveals that the surface seawater over the core site was significantly saltier during the penultimate interglacial than the Holocene. We suggest that the evolution of a seasonal insolation gradient between the Indian monsoon areas and the equator over the investigated time interval was instrumental in shaping the strength of the Indian winter and summer monsoons that left their imprints on the equatorial Indian Ocean SSS via freshwater input and wind-induced mixing. The study shows that the insolation difference between northern latitudes and the equator during winter affects monsoon strength in the Indian region, especially during cold intervals.  相似文献   

6.
Radiocarbon-dated marine cores, measurements of sediment density and seismic surveys were used to estimate the sediment and mass accumulation rates (m/kyr and kg/m2/kyr) in the troughs from the southwest to north-central Iceland shelf (i.e. northwest sector of Iceland). The 3.5-kHz seismic survey showed varying thicknesses of acoustically transparent sediment in the troughs, whereas the inter-trough banks were largely devoid of sediment. The survey showed a pervasive reflector 1 to ≥60 m below the sea floor, which turned out to be Saksunarvatn tephra, dated at 10 180±60 cal. yr BP. The 3.5-kHz analogue data were digitized at 1-min intervals and provided 1645 estimates of maximum sediment thickness and 979 estimates of sediment accumulation over the last 10 200 cal. yr BP. Maximum sediment accumulation occurred in the mid-troughs and not, as expected, in the fjords. The median sediment accumulation rate (SAR) based on the core data was 0.23 m/kyr, but was 0.77 m/kyr based on the seismic data: the difference is attributed to coring limitations. Based on the volume of offshore sediment and the contributing terrestrial drainage area, the Holocene denudation of northern Iceland (c. 50 000 km2) is calculated to have been between 0.02 to 0.05 m/kyr, substantially lower that the 1-3 m/kyr derived from the suspended sediment load of rivers from southern Iceland but in agreement with the rate of accumulation of Holocene glacial lacustrine sediments in central Iceland.  相似文献   

7.
The sediment–landform associations of the northern Taymyr Peninsula in Arctic Siberia tell a tale of ice sheets advancing from the Kara Sea shelf and inundating the peninsula, probably three times during the Weichselian. In each case the ice sheet had a margin frozen to its bed and an interior moving over a deforming bed. The North Taymyr ice‐marginal zone (NTZ) comprises ice‐marginal and supraglacial landsystems dominated by thrust‐block moraines 2–3 km wide and large‐scale deformation of sediments and ice. Large areas are still underlain by remnant glacier ice and a supraglacial landscape with numerous ice‐walled lakes and kames is forming even today. The proglacial landsystem is characterised by subaqueous (e.g. deltas) or terrestrial (e.g. sandar) environments, depending on location/altitude and time of formation. Dating results (OSL, 14C) indicate that the NTZ was initiated ca. 80 kyr BP during the retreat of the Early Weichselian ice sheet and that it records the maximum limit of a Middle Weichselian glaciation (ca. 65 kyr BP). During both these events, proglacial lakes were dammed by the ice sheets. Part of the NTZ was occupied by a thin Late Weichselian ice sheet (20–12 kyr BP), resulting in subaerial proglacial drainage. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

9.
Cryoturbated organic beds and channel fills, intercalated with sandy and gravelly fluvial units, have been studied in an opencast brown‐coal mine near Nochten (Niederlausitz), eastern Germany. The fluvial–aeolian sequence covers parts of the Early, Pleni‐ and Late‐glacial. The detailed chronology is based on 11 radiocarbon and 12 OSL dates, covering the period between ca. 100 kyr and 11 kyr BP. Basal peat deposits are correlated with an Early Weichselian interstadial. During this period boreal forests were present and minimum mean summer temperatures were > 13°C. Early Pleniglacial deposits are absent. The Middle and Late Pleniglacial environments were treeless and different types of tundra vegetation can be recognised. Minimum mean summer temperatures varied between 10 and 15°C. Vegetation and climate is reconstructed in detail for the periods around 34–38 kyr BP and 24–25 kyr BP. Around 34–38 ka, a mixture between a low shrub tundra and a cottongrass tussock–subshrub tundra was present. The botanical and sedimentological data suggest that from the Middle to the Late Pleniglacial, the climate became more continental, aridity and wind strength increased, and the role of a protecting winter snow cover decreased. A sedge–grass–moss tundra dominated around 24 and 25 kyr BP. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Tunnel channels in southeast Alberta are attributed to erosion by channelized, subglacial meltwater flows. An anabranching tunnel channel network dissects the preglacial drainage divide of the ancestral Milk River. Channel morphology and landform associations are used to evaluate competing hypotheses of tunnel channel formation. Mechanisms that invoke subaerial channel incision, direct glacial erosion or steady state, time-transgressive erosion at the ice margin cannot explain convex-up longitudinal channel profiles, anabranching channel networks or confinement to the preglacial drainage divide. Results conclude that the tunnel channel network in southeast Alberta represents late-stage erosion by a channelised subglacial flow of catastrophic dimensions. Interpretations for this tunnel channel network are in agreement with conclusions obtained for the regional subglacial landform assemblage.  相似文献   

11.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

12.
From the recognition that major incisions formed at lowland or tidewater ice sheet margins during each of the last three glacial stages, it is assumed that a standard Quaternary stratigraphy is applicable to the deposits geophysically profiled on the continental shelf off Britain. Ice limits for each glacial stadial can be mapped from the geographical distribution of the incisions.
During the next glacial stage major incisions will be downcut on the present continental shelf or coastal lowlands to some 350 m below the ambient surface. This will have important environmental consequences regarding the long-term burial of hazardous wastes.  相似文献   

13.
Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W. & Diekmann, B. 2009: A 12.5‐kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 10.1111/j.1502‐3885.2009.00116.x. ISSN 0300‐9483. A 415 cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon‐dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic‐rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well‐preserved and radiocarbon‐dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe‐like communities around the site, possibly in response to a relatively warm and dry climate ~11.4–11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0–8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2–6.9 and ~6.7–0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170 km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.  相似文献   

14.
Mangerud, J., Gulliksen, S. & Larsen, E. 2009: 14C‐dated fluctuations of the western flank of the Scandinavian Ice Sheet 45–25 kyr BP compared with Bølling–Younger Dryas fluctuations and Dansgaard–Oeschger events in Greenland. Boreas, 10.1111/j.1502‐3885.2009.00127.x. ISSN 0300‐9483. We present 32 accelerator mass spectrometry (AMS) 14C dates obtained on well‐preserved bones from caves in western Norway. The resulting ages of 34–28 14C kyr BP demonstrate that the coast was ice‐free during the so‐called Ålesund Interstadial. New AMS 14C dates on shells aged 41–38 14C kyr BP are evidence of an earlier (Austnes) ice‐free period. The Ålesund Interstadial correlates with Greenland interstadials 8–7 and the Austnes Interstadial with Greenland interstadials 12–11. Between and after the two interstadials, the ice margin reached onto the continental shelf west of Norway. These events can be closely correlated with the Greenland ice core stratigraphy, partly based on identification of the Laschamp and Mono Lake palaeomagnetic excursions. We found that the pattern of the NGRIP δ18O curves for the two periods Greenland Interstadial (GI) 8 to Greenland Stadial (GS) 8 and GI 1–GS 1 (Bølling–Younger Dryas) were strikingly similar, which leads us to suggest that the underlying causes of these climate shifts could have been the same. We therefore discuss some aspects of glacial fluctuations during the Bølling–Younger Dryas in order to elucidate processes during Dansgaard–Oeschger events.  相似文献   

15.
Twelve palaeogeographical reconstructions illustrate environmental changes at the southwest rim of the Scandinavian Ice Sheet 40–15 kyr BP. Synchronised land, sea and glacier configurations are based on the lithostratigraphy of tills and intertill sediments. Dating is provided by optically stimulated luminescence and calibrated accelerator mass spectrometry radiocarbon. An interstadial sequence ca. 40–30 kyr BP with boreo‐arctic proglacial fjords and subarctic flora and occasional glaciation in the Baltic was succeeded by a Last Glacial Maximum sequence ca. 30–20 kyr BP, with the closure of fjords and subsequent ice streams in glacial lake basins in Kattegat and the Baltic. Steadily flowing ice from Sweden bordered the Norwegian Channel Ice Stream. A deglaciation sequence ca. 20–15 kyr BP indicates the transgression of arctic waters, retreat of the Swedish ice and advance of Baltic ice streams succeeded by a return to interstadial conditions. When ameliorated ice‐free conditions prevailed in maritime regions, glaciers advanced through the Baltic and when interstadial regimes dominated the Baltic, glaciers expanded off the Norwegian coast. The largest glacier extent was reached in the North Sea around 29 kyr BP, about 22 kyr BP in Denmark and ca. 18 kyr BP in the Baltic. Our model provides new data for future numerical and qualitative landform‐based models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A 22 m long sediment core from Lake Yamozero on the Timan Ridge in northern Russia has provided evidence of intriguing climatic shifts during the last glacial cycle. An overall shallowing of the lake is reflected in the lower part of the cores, where pollen indicates a transition from glacial steppe vegetation to interstadial shrub-tundra. These beds are capped by a well-defined layer of compact clay deposited in relatively deep water, where pollen shows surrounding spruce forests and warmer-than-present summer temperatures. The most conservative interpretation is that this unit represents the last interglacial period. However, a series of Optical Stimulated Luminescence (OSL) dates suggests that it corresponds with the Early Weichselian Odderade interstadial (MIS 5a). This would imply that the Odderade interstadial was just as warm as a normal interglacial in this continental part of northern Europe. If correct, then pollen analysis, as a correlation tool, is less straightforward and the definition of an interglacial is more complex than previously thought. We discuss the validity and possible systematic errors of the OSL dates on which this age model is based, but conclude they really indicate a MIS 5a age for the warm period. Above the clay is an unconformity, most likely reflecting a period of subaerial exposure implying dry conditions. Deposition of silt under fluctuating cold climates in the Middle Weichselian continued until a second gap in the record at c . 40 kyr BP. The lake basin started to fill up again around 18 kyr BP.  相似文献   

17.
The Mackenzie Delta is a large fine‐grained delta deposited in a cold arctic setting. The delta has been constructed upon a flooding surface developed on a previous shelf‐phase delta. There are three principal depositional zones: the subaerial delta plain, the distributary channel mouth region and the subaqeous delta. The subaerial delta plain is characterized by an anastomosing system of high‐sinuosity channels and extensive thermokarst lake development. This region is greatly influenced by the annual cycle of seasonal processes including winter freezing of sediments and channels, ice‐jamming and flooding in the early spring and declining river stage during the summer and autumn. Deposition occurs on channel levees and in thermokarst lakes during flood events and is commonly rhythmic in nature with discrete annual beds being distinguishable. In the channel mouth environment, deposition is dominated by landward accretion and aggradation of mouth bars during river‐ and storm surge‐induced flood events. The subaqeous delta is characterized by a shallow water platform and a gentle offshore slope. Sediment bypassing of the shallow‐water platform is efficient as a result of the presence of incised submarine channels and the predominance of suspension transport of fine‐grained sediments. Facies of the shallow platform include silty sand with climbing ripple lamination. Offshore facies are dominated by seaward‐fining fine sand to silt tempestites. Sea‐ice scouring and sediment deformation are common beyond 10 m water depth where bioturbated muds are the predominant facies. The low angle profile of the shallow‐water platform is interpreted to be the combined response of a fine‐grained delta to (1) storm sediment dispersal; (2) autoretreat as a result of the increasing subaerial and subaqeous area of deposition as the delta progrades out of its glacial valley; (3) limited water depth above the underlying flooding surface; and (4) efficient nearshore bypassing of sediment through subice channels at the peak of spring discharge. Several indicators of the cold climate can be used as criteria for the interpretation of ancient successions, including thermokarst lake development, submarine channel scours, freeze–thaw deformation and ice‐scour deformation structures. Permafrost inhibits compaction subsidence and, together with the shallow‐water setting, also limits autocyclic lobe switching. The cold climate can thus influence stratal architecture by favouring the development of regional‐scale clinoform sets rather than multiple, smaller scale lobes separated by autocyclic flooding surfaces.  相似文献   

18.
This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.  相似文献   

19.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In the summer of 1999, the Maritimes and Northeast Pipeline Company excavated a 3-m-deep trench across northern Nova Scotia exposing a continuous transect of surficial deposits along a 237-km corridor. A Lateglacial palaeosol with preserved A horizon (peat and wood) buried under 2-10 m of surface till consisted mainly of herbaceous plant material with few large wood fragments. Large pieces of wood from two sites yielded conventional radiocarbon ages of 10.9 14C kyr BP (GSC-6435) and 10.8 14C kyr BP (GSC-6419). Previous to these finds, only a few localities were known to reveal till overlying peat, so the extent of Younger Dryas (YD) glaciers could not be clearly established. Glacial flow lines indicated by fabric and fluting of the YD surface till sheet in northern Nova Scotia and ice-marginal deposits imply an ice cap centred over eastern P.E.I. and the southern Gulf of St. Lawrence. This glacier also dammed a series of glacial lakes against the highland-rimmed west coast of Cape Breton Island. Glaciers developed and advanced during the YD in the uplands and offshore shelf areas from small remnants of Late Wisconsinan ice. Renewed ice growth was enabled by increased precipitation and local cooling in the Gulf of St. Lawrence due to deflection of the jet stream and expanded sea-ice cover in the North Atlantic. The YD may provide an analogy to glacier development in Maritime Canada during the interglacial/glacial transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号