首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
曾勇  杨莲梅 《暴雨灾害》2020,38(1):41-51, 182

利用常规观测、风云卫星、多普勒天气雷达、CMORPH卫星降水量融合资料和NCEP/NCAR(0.25°×0.25°)再分析资料,对2016年6月16-17日新疆西部一次罕见暴雨过程进行中尺度分析。结果表明:(1)该暴雨过程具有累计雨量大、暴雨强度强、局地日雨量破极值、短时强降水范围广等特点。暴雨区位于200 hPa高空西南急流出口区左侧、500 hPa偏南气流及700 hPa切变线附近。较强的CAPEK指数对该暴雨有很好的指示意义。(2)该暴雨过程发生在低层辐合、高层辐散、低层较湿的有利背景下。强正涡度、强辐合和强上升运动不断将水汽和能量向上输送,为暴雨的产生提供有利的环境条件。(3)中亚地区中尺度雨团在发展演变过程中,逐渐形成西南-东北向带状多中心雨带,中心依次到达伊犁北部沿山地区,和原有的中尺度雨团共同作用,造成暴雨天气过程。中尺度对流云团不断产生于中亚地区,在东移过程中不断发展加强依次到达暴雨区,致使暴雨区不断产生短时强降水。(4)暴雨过程两个时段的中尺度对流系统存在明显差异,第一时段主要为孤立中尺度对流系统,造成伊宁博尔博松站成为暴雨中心并出现最强短时强降水的直接系统是风场特征明显的中γ尺度对流单体并在暴雨区维持少动。第二时段为CR达50 dBz、DVIL达4 g·m-3,长度达70 km、宽度达10km且呈准南北态的线状中尺度对流系统,其在向东移动过程中造成多站依次出现短时强降水天气。

  相似文献   

2.
2012年盛夏山东西部一次短时强降水天气的形成机制   总被引:1,自引:0,他引:1  
徐娟  纪凡华  韩风军  吕博  王健  衣霞 《干旱气象》2014,(3):439-445,459
利用常规观测资料、自动站加密观测资料、卫星云图和雷达资料,对2012年7月4日山东省西部一次短时强降水的天气形势、物理量条件、云图和雷达回波特征进行分析。结果表明:在有利降水的大尺度天气系统背景下,低层冷空气和中尺度天气系统造成了本次短时强降水天气;低层925hPa和1 000 hPa的充沛水汽和辐合上升运动有利于强降水天气的发生,正涡度中心对应强降水中心;地面辐合线和低压环流造成本次短时强降水天气;中尺度对流云团和地面中尺度系统相对应,其位置和维持时间与强降水的落区和时间基本一致。雷达组合反射率因子〉45 dBZ的强回波区与强降水落区基本吻合;雷达平均径向速度产品逆风区中辐合流场的出现和维持及回波顶高的上升对应地面中尺度气旋式环流的形成和维持;逆风区中辐散流场的出现和维持及回波顶高的下降,对应地面中尺度气旋式环流的减弱;短时强降水出现的初期,垂直累积液态水含量出现了一个峰值,峰值出现时间提前于较强降水时段。  相似文献   

3.
内蒙古夏季典型短时强降水中尺度特征   总被引:1,自引:1,他引:1       下载免费PDF全文
利用常规观测资料、NCEP FNL分析资料、FY-2D逐时云顶亮温(TBB)资料、内蒙古地区自动气象站资料和闪电定位资料, 对2012—2015年内蒙古夏季37例典型短时强降水事件进行分析。结果表明:冷锋云系尾部、涡旋云系和暖湿切变云系中发展的中尺度对流系统(MCS)是造成内蒙古短时强降水的直接影响系统, 短时强降水发生在MCS发展或成熟阶段, 而且位于TBB梯度密集区MCS移出区域靠近干冷空气侵入一侧。自动气象站观测到的中气旋、中低压以及中小尺度气旋式辐合风场和切变线诱发MCS发展, MCS发展到成熟阶段地闪密度达到最大值, 地闪密度值较高对应的MCS面积扩展率也较大。内蒙古西部和中部偏北地区短时强降水发生前3 h相对湿度达到60%~80%, 但其余地区相对湿度基本为80%~90%, 温度锋区浅薄冷空气是触发MCS发生发展的关键因素。  相似文献   

4.
2015年8月1日和2日夜间青海省海东市连续出现伴有短时强降水的强对流天气,导致部分乡镇洪涝,洪水淹没农田,冲走牲畜、冲毁自来水管道、路基,造成部分地方停水、道路中断等等,给当地群众造成严重损失。利用高空、地面观测、卫星云图、雷电等资料,采用中尺度天气图分析技术,得到预报此类短时强降水的一些依据:青海东部处于副高北侧的偏西气流中,蒙古槽底锋区南压至新疆北部、内蒙一带或西北气流中不断下滑冷空气的环流条件下,500h Pa青海东部有24小时负变压区,负变压中心易形成中小尺度的辐合流场;700h Pa青海东部有偏东或偏南气流提供充足的底层水汽,且河湟谷地内的偏东风对强降水提供一定强度的动力条件;高原低层850~700h Pa温度场上为暖脊,并与北部下滑的弱冷空气叠加,可产生强烈的对流不稳定;700h Pa干线与地面干线易触发中小尺度对流系统,并常对应降水区;地面辐合有利形成强降水;高层强的辐散为强降水提供了良好的动力条件;青海东部较强的对流有效位能、较大的风的垂直切变及深厚的湿层,非常利于强对流的发展及短时强降水天气的产生。  相似文献   

5.
利用1990年华北区域中尺度暴雨监测联防业务试验期间的获得的较为稠密的地面观测资料,卫星云图及常规天气图资料,对1990年8月中旬的一次影响山东强暴雨天气过程作了初步的天气学分析和中尺度分析,指出了直接造成这场大暴雨的中尺度系统和有利于它们发展的环境条件,文中重点讨论了中尺度天气系统及云团与雨团的关系。  相似文献   

6.
通过常规气象资料、卫星云图和T106数值预报产品中的要素场和物理量场资料,分析了青海东部地区1999年6月13日夜间到14日强降水天气过程,得出了一些预报强降水天气过程的依据。  相似文献   

7.
利用常规地面、高空观测资料、FY-2G云图TBB资料、NCEP/NCAR(1°×1°)再分析资料以及库尔勒探空和多普勒雷达资料,采用25点平滑算子的滤波方法,对2016年8月23—24日新疆巴音郭楞蒙古自治州(下简称巴州)一次短时强降水过程的中尺度特征及其发生、发展机理进行分析。结果表明:"三支急流"的有利配置以及700 h Pa中尺度气旋性辐合的形成对强降水区内垂直运动的发展和水汽的辐合上升具有明显促进作用,配合低层高温高湿、中层干冷空气侵入、地面中尺度辐合线的形成等条件直接诱导了此次短时强降水的发生;强对流发生前,低层水汽饱和、对流不稳定层结、中等强度的垂直风切变和强的温度垂直递减率为强对流的发生发展提供了良好的潜势条件;此次强降水的雷达回波具有较明显的强回波低质心结构特征,降水效率较高,持续时间较长,导致过程累积降水较大。库尔勒及周边地区的短时强降水主要由弓型回波在缓慢东移过程中断裂分散成的多个γ尺度的对流单体造成。  相似文献   

8.
余蓉  杜牧云  顾永刚 《暴雨灾害》2019,29(6):640-648

利用探空和地面加密自动站逐小时观测资料,对2010—2011年汛期发生在锋面上的四次具有不同发展模态的短时强降水过程的降水系统环境场特征进行了分析。结果表明:对于产生短时强降水的中尺度对流系统(MCS),地面假相当位温(θse)等值线密集区和地面切变线的分布形态及运动是影响其系统模态发展和移动方向的关键因素,且对流单体的新生还与地面辐合区密切相关。纬向型MCS的θse等值线密集区呈纬向分布;经向型MCS的θse等值线密集区呈经向分布;转向型MCS的θse等值线密集区则由经向转为纬向分布。不同发展模态MCS的强降水持续时间与地面θse高值区的持续时间关系密切。

  相似文献   

9.
华北回流强降水天气过程的中尺度分析   总被引:1,自引:1,他引:1       下载免费PDF全文
张守保  张迎新  郭品文 《高原气象》2009,28(5):1067-1074
使用华北地区加密自动站资料、 多普勒雷达资料和NCEP(1°×1°)再分析资料, 应用中尺度滤波方法、 诊断分析方法等, 对2003年10月华北回流暴雨天气过程进行了中尺度分析。结果表明: 在回流冷空气与西南暖湿气流相遇产生的辐合带中存在中尺度低压和切变; 中尺度低压和切变主要在600 hPa以下, 中尺度低压随高度向西、 向北倾斜, 东西向中尺度切变随高度向北倾斜。此次回流暴雨过程中有5个中尺度雨团活动, 其中3个中尺度雨团与中尺度低压和切变配合且随低压和切变移动, 暴雨期间多普勒雷达速度图上出现了持续2 h以上的逆风区。  相似文献   

10.
利用武汉站风廓线雷达和地基微波辐射计获取的高时空分辨率资料,结合雷达回波和地面自动站加密观测资料,分析了2011年6月9日武汉短时强降水过程的中尺度对流系统。结果表明:引起短时强降水的是一个尾随层云类中尺度对流系统。降水开始前15 min,对流层中低层有显著倾斜上升气流,并在其前后形成两个小尺度涡旋,与冷池和风切变抗衡下新单体的生成模型相一致。强降水开始前,地面气压迅速降低,地面风速迅速增大,云底高度波动降低;降水发生后,成熟单体前部边界层和高层为相对"对流线"前进方向由后向前的水平运动,对流层低层为由前向后的水平运动,成熟单体后部边界层、对流层低层和高层为相对"对流线"由前向后的水平运动,中层为由后向前的水平运动,这些特征与线状中尺度对流系统成熟阶段模型相符。  相似文献   

11.

利用国防科技大学全球中期数值天气预报模式(YinHe Global Spetral model,YHGS)产品驱动WRF对2018年7月4日华中地区暴雨过程进行模拟,并与ERA-interim资料作初始场模拟结果对比,评估YHGS模式产品在此次暴雨过程预报中的应用能力。结果表明:(1)WRF-YHGS对2018年7月4日华中地区暴雨过程有一定的预报能力,其模拟的大尺度环流形势、水汽收支量变化趋势与WRF-ERA有着很好的一致性,YHGS模式产品驱动中尺度数值预报是可行的。(2)WRF-YHGS模拟效果较WRF-ERA差,但大雨量级WRF-ERA湿偏差较大,两组试验各物理量模拟结果存在一定差距,且随着积分时间的增加差异逐渐增大。(3)WRF-YHGS、WRF-ERA模拟结果的差异主要来自YHGS与ERA初始场中差异较大的次天气尺度运动和YHGS全球模式预报场误差两个方面。

  相似文献   

12.
对12h24mm以上强降水带的预报,模式输出的降水资料是预报的重要依据,但有时偏差较大。依据中尺度分析技术,利用常规资料、EC细网格和T639模式12h预报场对2013年夏季发生在北疆北部的2次区域强降水过程中12h最强降水时段的环境场进行中尺度分析。结果表明,中亚低槽北上强降水落区位于500和700hPa中尺度气旋的第一、四象限及对流层低层冷槽的右侧,850hPa切变线附近,地面中尺度高压前部、边界线和切变线附近及干线西侧的重合区域。西西伯利亚低涡型暴雨位于中尺度短波槽前、高空西南急流出口区左侧辐散区,700和850hPa切变线西侧及干线西南部,850hPa偏西、偏东及东南3股气流汇合区,地面干线的西部、辐合线东部及切变线附近的重叠区域。中亚低槽北上暴雨天气为非典型暴雨易漏报。用模式12h预报场制作高空综合图,可提高预报时效,EC细网格优于T639模式。  相似文献   

13.
A coupled mesoscale atmospheric-land surface model is used to simulate a twelve-day heavy precipitation event in California. In addition to the temporal variation of the large-scale flow, local topography played a crucial role in the simulated precipitation and land-surface snow budget through orographically-generated vertical motion and a decrease of atmospheric temperature with increasing altitude. The observed and simulated heavy precipitation occurred at locations where orographic lifting is strong: western slopes of the Sierra Nevada Mountains and the Coastal Range. Due to rainshadow effects, the Central Valley area, which is located at the lee side of the Coastal Range, received only a small amount of precipitation. The snowline appeared at altitudes as low as 750 m above sea level, and most of the precipitation above the 1.8 km level was snow. Maximum rainfall was located near the 1 km elevation along the western slope of the Sierra-Nevada while snowfall maxima appeared along the ridge of the Sierra Nevada Mountains. Snow accumulation was also strongly dependent upon surface elevations. The simulation suggested that over 75% of the fresh snowfall during the study period was added to the existing snow cover at elevations above 1.5 km while much of the snowfall over lower elevations melted.  相似文献   

14.

利用常规观测资料以及江苏省区域自动站资料、多普勒天气雷达和风廓线雷达资料、FY-2F卫星云图与NECP 1°×1°再分析资料, 对2014年8月7-8日发生在江苏的一次大暴雨天气过程进行了中尺度分析。结果表明:(1)该过程是在1411号台风\  相似文献   


15.
华南一次典型回流暖区暴雨过程的中尺度分析   总被引:3,自引:0,他引:3  
利用地面常规气象观测、FY-2E卫星TBB、多普勒天气雷达资料以及NCEP/NCAR 1°×1°再分析资料,分析了2013年5月8日发生在华南的一次暖区暴雨过程的中尺度特征。结果表明:(1)该过程发生在出海变性高压脊后部,较强的超低空东南急流遇到喇叭口地形作用形成地面辐合线产生辐合抬升是此次暴雨的启动机制;该过程未受冷空气影响,属于华南回流型暖区暴雨过程。(2)4个β中尺度对流系统(MCS)连续生成、东移发展是造成本次暴雨过程的直接原因,其中,第一个MCS持续时间最长达6 h,先前MCS消亡的同时在其西南侧又新生MCS,造成多个对流系统经过同一地区形成类似的"列车效应"。(3)不同于以往华南暖区暴雨个例水汽集中在850 h Pa或925 h Pa,此个例水汽主要来源于950 h Pa超低空东南急流,该急流使低层能量得以维持;中层小股干冷空气侵入为MCS发展和维持提供了有利条件;垂直螺旋度反映了深厚涡度柱与强烈上升运动的耦合,为暴雨发生提供了动力机制。(4)分析区域自动站风场资料可知,阳江-恩平一带夜间增强的东南风在有利地形下与陆地静风或东北风形成中尺度辐合线,使移入的小尺度对流云团加强并形成MCS,而MCS后侧出流与来自海洋上的东南气流形成新的中尺度辐合线又触发新的MCS,其后向传播特征明显。  相似文献   

16.
During the Heavy Rainfall Experiment in South China (HUAMEX) of 1998, a record heavy rainfall event occurred in the delta of the Pearl River during the 24 hours from 1200 UTC 8 June to 1200 UTC 9 June, 1998, and a 24-hour precipitation maximum of 574 mm was reported in Hong Kong. In this paper, some mesoscale characteristics of this heavy rainfall event are studied using data from satellites, Doppler radar, wind profilers, and automatic meteorological stations collected during HUAMEX. The following conclusions are drawn: (1) During this heavy rainfall event, there existed a favorable large-scale environment, that included a front with weak baroclinity in the heavy rain area and with an upward motion branch ahead of the front. (2) Unlike most extratropical or subtropical systems, the closed low in the geopotential height field does not exited. The obvious feature was that a southerly branch trough in the westerlies existed and Hong Kong was located ahead of the trough. (3) The rainfall areas were located in the warm sector ahead of the front, rather than in the frontal zone, which is one of the characteristics of heavy rainfalls during the pre-rainy season of South China. A southerly warm and moist current contributed to the heavy rainfall formation, including the transportation of rich water vapor and the creation of strong horizontal wind convergence. (4) The observations show that the heavy rainfall in Hong Kong was directly caused by a series of meso β systems rather than a mesoscale convective complex (MCC). These meso β systems moved with the steering current in the lower-mid troposphere, their life cycles were 3-6 hours, and their horizontal sizes were 10-100 km. (5) The disturbances in the lower and mid troposphere, especially that in the planetary boundary layer (PBL) were very shallow. However, they are a possible trigger mechanism for the occurrence and development of the mesoscale convective systems and related heavy rainfalls. Finally, a conceptual model of the heav  相似文献   

17.
文影  封彩云  余莲 《暴雨灾害》2023,34(3):260-272

为评估中尺度模式同化常规地面、探空和雷达径向风等不同观测资料对四川暴雨预报性能的影响,以2020年6月14—18日四川一次暴雨过程为例,利用WRF(Weather Research And Forecasting)模式和GSI(Grid Point Statistical Interpolation)同化系统,对常规观测资料和雷达资料分别和同时进行循环同化,开展数值模拟试验,定性和定量地对比分析三组同化试验的降水模拟效果。结果表明:WRF模式结合GSI同化系统对此次暴雨有较好的模拟。针对21 h累积降水模拟,同化常规观测资料较好地改善了暴雨雨带的走向和暴雨的落区;同化雷达资料对降水强度、暴雨范围和小到中雨预报表现较好,小到中雨的ETS评分平均提升0.05;同时同化两种资料对大雨的ETS、POD、FAR和BIAS评分都有改善。针对半日累积降水预报,同化雷达资料对降水趋势的模拟表现最好,同化包括雷达资料的试验对降水落区有较好的改善。针对3 h累积降水预报,同化试验对降水演变均有改善,同化雷达资料表现最好。模式对夜间降水的模拟普遍优于白天,同化试验的改善时段也主要集中在夜间,同化常规资料表现显著。综合21 h、半日和3 h累积降水预报评分结果,同时同化多种资料的降水预报效果不绝对优于仅同化一种资料的降水预报,但至少优于一种资料同化的降水预报评分结果。

  相似文献   

18.
19.
王楠  李萍云  井宇  赵强 《气象科学》2016,36(6):742-751
2012年盛夏陕西绥德县出现短时强降水,4 h雨量超过100 mm。利用NCEP 1°×1°再分析资料进行诊断分析发现,在陕北东北部对流层中下层有一中α尺度气旋存在,且随高度向东北倾斜,垂直方向上形成次级环流,使强降水区的上升运动加剧。分析地面观测、卫星资料发现,西路冷空气引导干侵入加强层结不稳定性,东路冷空气楔形抬升作用,使得不稳定能量释放;同时,在东西两路干冷空气的夹击作用下,绥德县内形成中气旋,暖湿空气在当地得以聚集上升;2个中β尺度对流云团在东西路风场作用下合并后迅速增强。多普勒雷达资料显示,2个中γ尺度的超级单体回波在绥德先后发展形成列车效应;2个超级单体中的中气旋特征各有不同,是回波结构演变的主要原因。  相似文献   

20.
利用华北地区248个加密气象观测站资料、FY-2G黑体亮温TBB、邢台站探空资料、华北地区多普勒雷达资料、欧洲中心(ECMWF)0.25°×0.25°和NCEP/NCAR(1°×1°)再分析资料,对2016年7月19—21日一场特大暴雨进行多尺度特征分析。结果表明:200 hPa南亚高压系统呈东西带状分布,500 hPa为“东高西低”环流背景,鄂霍茨克海附近闭合高压下游阻挡效应使上游系统移速缓慢,华北长时间处于深槽之中,环流形势利于产生稳定经向型暴雨;通过高低层流场对比发现,高空急流入口区右侧与低空急流出口区左侧重叠区为最强降水区域,降水大值区均位于太行山及燕山山脉迎风坡;垂直方向上,垂直上升运动中心介于散度辐合中心与辐散中心之间,剧烈的抽吸效应将水汽输送至高层,冷暖气流交汇及水汽上升过程凝结潜热释放导致对流系统迅速发展。河北地区稳定的深厚气旋是本次暴雨的关键系统,19日石家庄地区强对流单体(>45 dBz)存在时间超过20 h。MCS影响范围广、特殊山脉地形作用、系统停留时间较长等原因造成累积降水量增大,是本次暴雨与“7.21”北京特大暴雨相比的突出特点之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号