首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

2.
正A suit of metamorphic rocks experienced amphibolite and partly granulite facies metamorphism exposed on the Lhasa block,which are recognized as the basement of the Lhasa block named as Nyainqentanglha Group in the  相似文献   

3.
The Blkou Group on the Shaanxi-Gansu-Sichuan border is composed of Mid-Late Proterozoic metamorphosed bimodal volcanic rocks and flysch sediments. Its metamorphism may be divided into the blueschist and greenschist facies. Three metamorphlc zones, i.e. zones A, B, and C, may be distinguished on the basis of the field distribution of metamorphlc rocks and the variation of b0 values of muscovite. Blueschists are characterized by coexistence of sodic amphiboles and epidote and occur as stripes or relict patches in extensive greenschists of zone A. Studies of metamorphic minerals such as amphiboles, chlorite, epidote and muscovite and their textural relationships indicate that blueschists and greenschists were not formed under the same metamorphic physico-chemical conditions. The blueschist facies was formed at temperatures of 300-400℃ and pressures of 0.5-0.6 GPa. The greenschist facies in zones A and B has similar temperatures but its pressure is only 0.4 GPa or so. The transition from the blueschist to  相似文献   

4.
A contact zone sandwiched between an arc and an oceanic crust was discovered in the Laohushan area in the present study. It consists of a series of north-dipping imbricated thrust sheets and is exposed on the surface as a narrow arcuate belt, which extends for about 30 km in an E-W direction and measures about 1-3 km wide. Lithologically, it can be divided into four subzones. Subzone 1 consists of meta-andesite and metasandstone; subzone 2, psammitic schists; subzone 3, psammitic and pelitic schists, quartz diorite and hornfelses; and subzone 4, metagabbro, epidote amphibolite and pelitic schists. The metamorphism has the following grading sequence: low greenschist facies in subzone 1 → high greenschist facies in subzone 2 →low amphibolite facies in subzone 3→ epidote amphibolite facies in subzone 4. Petrographic and geochemical evidence shows that rocks in subzones 1, 2 and 3 are arc rocks, whereas those of subzone 4 are oceanic crustal rocks. The metamorphic mineral assemblages and especially miner  相似文献   

5.
《地学前缘(英文版)》2018,9(6):1795-1807
The high-to ultrahigh-pressure metamorphic rocks of the Atbashy complex were petrologically investigated. The eclogites of the Choloktor Formation show a prograde evolution from epidote-blueschist facies(P = 17-21 kbar and T = 450-515 ℃) to peak eclogite-UHP conditions(P = 26-29 kbar and T = 545-615 ℃) with a subsequent epidote-amphibolite and greenschist facies overprint. The micaschists of the Choloktor Formation also show a clockwise P-T path from blueschist/epidote-blueschist facies conditions through peak eclogite facies conditions(P = 21-23 kbar and T = 530-580 ℃) to retrograde epidote-amphibolite and greenschist facies stages. A comparison of the P-T paths in the eclogites and mica-schists of Choloktor Formation reveal that they may have shared their P-T history from peak to retrograde stages. The mica-schists of the Atbashy Formation record peak metamorphism of P = 10-12 kbar and T = 515-565 ℃, which indicates that the highest grade of regional metamorphism in the Atbashy Ridge was epidote-amphibolite facies.The newly obtained P-T conditions for the mica-schists of Choloktor Formation indicate that sheets of sedimentary rocks were brought to great depths along the subduction zone and they metamorphosed under eclogite facies HP conditions. The eclogite blocks were amalgamated with mica-schists of Choloktor Formation in the eclogite facies HP conditions and together they experienced isothermal decompression to ~40 km. During this path, the eclogites and mica-schists of Choloktor Formation docked with mica-schists of Atbashy Formation at 10-12 kbar and 515-565 ℃, and from this depth(~40 km) the whole sequence was exhumed together. These new results improve our understanding of high-pressure metamorphism in subduction-related accretionary prism zones and the exhumation processes of deeply-seated rocks in the Atbashy HP-UHP complex.  相似文献   

6.
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age o  相似文献   

7.
The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites,quartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian andless commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism.The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite facies in theFuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies(garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220-260 Ma.This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolitefacies belong to the typical medium-pressure type which shows geothermal gradients of about 17-20℃/km and wasprobably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulitefacies belongs to the low-pressure type which shows geothermal gradients of about 25-38℃/km and was probablyaffected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculatedfrom the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place dur-ing an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch meta-morphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch meta-morphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny.  相似文献   

8.
Diffusion modeling of zoning profiles in eclogite garnets from three different tectonic units of Mt. Dabie, UHPM unit, HPM unit and northern Dabie, was used to estimate the relative time span and cooling rates of these rocks. Modeling result for the Huangzhen eclogite garnet shows that the maximal time span for the diffusion-adjustment process is about 22 Ma since the peak-temperature metamorphism, which is the maximum time span from amphibolite facies metamorphism to greenschist facies metamorphism. The Bixiling eclogites had subjected to a cooling process at a rate of - 10℃/Ma from 750℃ to 560℃ during 20 Ma. The second cooling stage of the Raobazhai eclogite following granulite-facies metamorphism is an initial fast cooling process at a rate of about 25℃/Ma and then slowed down gradually. All these belong to a coherent Dabie collision orogen with differences in subduction depth and exhumation/uplifting path.  相似文献   

9.
The Penglai Group in the Jiaobei Belt is the only remaining cover of the Archaean to Early Proterozoic crystalline basement in eastern Shandong. The ages of deposition of the Penglai Group and of its deformation and metamorphism have long been a subject of speculation. Whole-rock Rb-Sr ages, illite-whole-rock pair Rb-Sr ages and illite K-Ar ages recently obtained from the Penglai Group slates are reported and interpreted in this paper. On the basis of structural and metamorphic studies coupled with analyses of illite crystallinity, XRD and SEM , a whole-rock age of 473±32 Ma (Ordovician) is interpreted as the time of termination of burial metamorphism experienced by the Penglai Group. Therefore, the age of the Penghai Group is older than Ordovician. The first-phase folding and syntectonic low greenschist facies metamorphism in the Penglai Group, i.e. the Penglai Movement, took place before 299±4 Ma B.P., i.e in the Late Carboniferous. The Penglai Movement that occurred in the Jiaobei Belt on the south  相似文献   

10.
The Tanjianshan Group, which was previously divided into a, b, c and d formations, has been controversial for a long time. It mainly distributes in the northern margin of Qaidam Basin and is an important early Paleozoic greenschist facies metamorphic volcanic sedimentary rock formation. Detailed field investigation and zircon LA-ICPMS U-Pb dating of the key strata suggest that the original lower part of a Formation(a-1) versus the original middle upper of d Formation(d-3 and d-4), the original upper part of a Formation(a-2) and b Formation versus the original lower part of d Formation(d-1 and d-2) of Tanjianshan Group are contemporaneous heterotopic facies volcanicclasolite deposit, respectively. The former formations formed during the middle-late Ordovician(463–458 Ma), while the latter ones formed in the late Ordovician(about 445 Ma). The original c formation of Tanjianshan Group, which formed after 430 Ma, is similar to the Maoniushan Formation of Kunlun Mountains and north Qaidam Basin. According to the rules of stratigraphic division and naming, new stratum formations of Tanjianshan Group are re-built and divided into Duancenggou(O1-2td), Zhongjiangou(O2-3tz) and Xitieshan(O3tx) formations. The original c Formation is separated from Tanjianshan Group and is renamed as the Wuminggou Formation(S3-D1w), which shows a discordant contact with underlying Tanjianshan Group and overlying Amunike Formation(D3a). The zircon U-Pb age frequency spectrogram of Tanjianshan Group indicates three prominent peaks of 430 Ma, 460 Ma and 908 Ma, which is consistent with the metamorphic and magmatic crystallization ages obtained from para- and orthogneisses in north Qaidam HP-UHP metamorphic belt, implying that strong Caledonian and Jinningian tectonic and magmatic events have ever happened in North Qaidam.  相似文献   

11.
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-t  相似文献   

12.
The central Fujian Province, situated on the juncture of paleo-uplift of Wuyishan, Yongmei Late Paleozoic depression and the eastern volcanic rift-fanlting zone, is mainly composed of the outcropped metamorphic basements in the Middle-Late and Early Proterozoic, which constitute two upper and lower giant thick formations of Precambrian volcanic-sedimentary cycles, respectively. The formation of Dongyan Group is an important Middle-Upper Proterozoic component, and the Dongyan Group is directly related to massive sulfide deposit in this area. In recent years, plenty of lead, zinc, copper, silver and gold deposits have been found and explored. The Precambrian paleorift setting of the central Fujian Province served as a favorite metallogenic background for the formation of large- and superlargescale volcanic massive sulfide (VMS) lead and zinc polymetal deposits. The Dongyan Group consists chiefly of a set of ancient volcanic sedimentary formations that are composed mainly of greenschist. Its major lithologic types comprise greenschist, marble, quartzite and granofels class including various components. The metamorphic rocks of Dongyan Group are the main composition of Middle and Upper Proterozoic volcanic-sedimentary cycle. The original rock of Dongyan Group, a stable rock association, is volcanic sedimentation and normal marine sedimentation. But the original volcanic rocks, basic and acid, are bimodal. The volcanic rocks were formed in the extensional continental rift setting.  相似文献   

13.
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.  相似文献   

14.
Permian sedimentary and basic to intermediate volcanic rocks assigned to the Conglomerado del Río Blanco and Portezuelo del Cenizo Formation, lower part of the Choiyoi Group, crop out between the Cordon del Plata, Cordillera Frontal and Precordillera of Mendoza Province, Argentina. The sedimentary rocks are represented by six lithofacies grouped in three facies associations. They were deposited by mantled and gravitational flows modified by high-energy fluvial currents that evolved to low-energy fluvial and lacustrine environments. They constitute the Conglomerado del Río Blanco, which cover unconformably marine Carboniferous sequences. Five volcanic and volcaniclastic facies make up the beginning of volcanic activity. The first volcanic event in the Portezuelo del Cenizo is basaltic to andesitic lava-flows emplaced in the flanks of volcanoes. Lava collapse produced thick block and ash flows.Interbedding in the intermediate volcanic rocks, there are dacites of different geochemical signature,which indicate that the development of acidic volcanism was coetaneous with the first volcanic activity.The geochemistry of these rocks induces to consider that the Choiyoi Group Lower section belongs to a magmatic arc on continental crust. The age of this section is assigned to the lower Permian(277 ? 3.0Ma, Kungurian age).  相似文献   

15.
The offset of geological bodies provides robust evidence of displacement along a fault or ductile shear zone. The amount of displacement along the Xuelongshan–Diancangshan–Ailaoshan structural system, southeastern Tibetan Plateau, is uncertain because of the lack of offset geological markers. This NNW–SSE-trending system is developed in three isolated metamorphic complexes and interjacent nonmetamorphosed rocks. They are expected to record similar post-Eocene strain, although their structural patterns should be distinct. Geological mapping in the area between the Xuelongshan and Diancangshan metamorphic complexes has revealed a small Eocene basin, the Madeng Basin, located to the west of the structural system. The sedimentary and volcanic successions of the Madeng Basin are comparable to those of the Jianchuan Basin, which is located to the east of the structural system. Zircon U–Pb geochronological and bulk geochemical data demonstrate that the volcanic rocks of both basins formed during 37–34 Ma and share the same geochemical features. These data suggest that the Madeng and Jianchuan basins previously constituted a single basin, with the distribution of high-K volcanic rocks in the basins defining an ENE–WSW-trending volcanic belt that shows a limited dextral offset of ≤20 km across the Xuelongshan–Diancangshan–Ailaoshan structural system. Therefore, the northern segment of the structural system records no evidence of large-scale lateral movement/displacement. The results suggest that the Indochina block, which is bounded by the Xuelongshan–Diancangshan–Ailaoshan structural system to the east and the Sagaing Fault to the west, has not extruded southward as a whole but rather has been deformed by pervasive crustal shortening.  相似文献   

16.
Presented in this paper are the newly obtained grain zircon U-Pb ages of volcanic rocks of the Lueliang Goup and associated Kuanping granitic migmatitic gneiss in Shanxi Province.The zircon U-Pb ages of bimodal volcanic rocks(basalt and rhyolite)of the Upper Lueliang Group indicate that the rocks erupted at about 2100 Ma.So the Lueliang Group was formed during the Early Proterozoic.In the area studied the second-stage metamorphism experienced by the Lueliang Group is the dominant one which took place at about 1806 Ma.i.e.,during the late Early Proterozoic.  相似文献   

17.
The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagzê and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an important volcanic suite for the study of the tectonic evolution of the Gangdise magmatic arc and the Mesozoic Tethys. Based on systematic field investigations, we carried out geochemical studies on representative rock samples. Major and trace element compositions were analyzed for these rock samples by XRF and ICP-MS respectively, and an isotope analysis of Rb-Sr and Sm-Nd was carried out by a MAT 262 mass spectrograph. The results show that the SiO2 contents in lava rocks are 41 %-50.4 % and 64 %-69 %, belonging to calc-alkaline basalt and dacite. One notable feature of the basalt is its low TiO2 content, 0.66 %-1.01 %, much lower than those of continental tholeiite. The ΣREE contents of basalt and dacite are 60.3-135 μg/g and 126.4-167.9 μg/g respectively. Both rocks have similar REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts have depleted Ti, Ta and Nb and slightly negative Nb and Ta anomalies, with Nb*=0.54-1.17 averaging 0.84. The dacites have depleted P and Ti and also slightly negative Nb and Ta anomalies, with Nb*=0.74-1.06 averaging 0.86. Major and trace elemental and isotopic studies suggest that both basalt and dacite originated from the partial melting of the mantle wedge at different degrees above the subduction zone. The spinal lherzolite in the upper mantle is likely to be their source rocks, which might have been affected by the selective metasomatism of fluids with crustal geochemistry. The LILE contents of both rocks were affected by metamorphism at later stages. The Yeba bimodal volcanic rocks formed in a temporal extensional situation in a mature island arc resulting from the Indosinian Gangdise magmatic arc.  相似文献   

18.
Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block, preserving abundant information about crustal reworking and growth. Zircon U–Pb–Lu–Hf isotope analysis was performed on material from the Feidong Complex (FDC) and Zhangbaling Group (ZBLG) of the Zhangbaling Uplift, in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks, to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block. The amphibolite and gneissic granites in the Feidong Complex (FDC) gave similar protolith ages of 782–776 Ma. The synmagmatic zircons exhibited variable negative εHf(t) values of ?26.9 to ?8.3. Early (ca. 2.4 Ga) to late Paleoproterozoic (ca. 2.0–1.9 Ga) inherited zircons were found in the gneissic monzogranite, with negative εHf(t) values of ?11.2 to ?7.2, indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block. Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas. The quartz–keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754–727 Ma with high εHf(t) values of ?2.0 to +5.6, indicating their derivation from the reworking of juvenile crustal materials. The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable 206Pb/238U ages (871–644 Ma) with a peak age at 741 ± 11 Ma and εHf(t) values of ?4.3 to +5.3, which is consistent with those of the Xileng Formation, but distinct from the FDC, indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation. The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block, situated in different positions from the Susong Complex and the Haizhou Group. The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.  相似文献   

19.
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure(HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative felsic granulite samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism(Stage Ⅰ) with P-T conditions of 9.8–10.4 kbar at 895–920°C was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism(Stage Ⅱ) shows P-T conditions of 13.2–13.5 kbar at 845–860°C, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anticlockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ⅠCP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are ~430 Ma, with two age groups of ~390 Ma and 340–350 Ma from the metamorphic rims of zircon, indicating the Stage Ⅰ and Ⅱ metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage Ⅰ granulite facies metamorphism of ~390 Ma, which may be related to the Devonian arc magmatic intrusion; Stage Ⅱ HP granulite facies metamorphism(340–350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.  相似文献   

20.
Investigation of the petrogenesis and the origin of zircons from the volcanic rocks of the Liujiaping Group of the back-Longmenshan tectonic belt in the northwest margin of the Yangtze Block is conducted by analysis of U–Pb geochronology and geochemistry. Results show that selected zircons are characterized by internal oscillatory zonings and high Th/U ratios (0.43–1.18), indicating an igneous origin. Geochronological results of LA–ICP–MS U–Pb dating of the Liujiaping Group zircons yield an age of 809 ± 11 Ma (MSWD = 2.2), implying that the volcanic rocks were formed in the Late Neoproterozoic. Geochemical analysis shows that the rocks are calc-alkaline, supersaturated in Al, and metaluminous to weakly peraluminous. Rare-earth elements are present at high concentrations (96.04–265.48 ppm) and show a rightward incline and a moderately negative Eu anomaly, similar to that of continental rift rhyolite. Trace element geochemistry is characterized by evident negative anomalies of Nb, Ta, P, Th, Ti, inter alia, and strong negative anomalies of K, Rb, Sr, et al. We conclude that the Liujiaping Group volcanic rocks resulted from typical continental crust source petrogenesis and were formed in a continental margin setting, which had no relation to subduction, and thus, were the products of partial melting of the lower crust due to crustal thickening caused by active continental margin subduction and arc–continent collision orogeny in the northwestern Yangtze Block and were triggered by the breakup of the Rodinia supercontinent during the Neoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号