首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In western Anatolia, a thick volcanic succession of andesitic to rhyolitic lavas and volcaniclastic rocks crops out extensively. On Foça Peninsula, the westernmost part of the region, a dominantly rhyolitic sequence is exposed where massive rhyolites occur as dome or domelike stubby lava flows. These rhyolite domes vertically and laterally pass into blanketing volcaniclastic sequences. The gradational boundary relations and the facies characteristics of the surrounding volcaniclastic sequences indicate that the silicic domes directly intruded a subaqueous environment and were shattered upon sudden contact with water to form hyaloclastic blankets.

In and around these rhyolite domes, we have defined six different volcanic and volcaniclastic facies, consisting of: (1) massive rhyolite; (2) massive perlite; (3) hyaloclastic breccias; (4) rhyolite pumice and lithic fragment-bearing volcaniclastic rocks; (5) subaqueous welded ignimbrites; and (6) brecciated perlite. The massive rhyolite facies have distinct structures from the centers to the peripheries of the domes and stubby lava flows. Massive lava facies gradually pass into hyaloclastic breccias and massive perlite facies, indicating water-magma interaction during the emplacement. Phreatomagmatic explosive activity and doming caused the subaqueous pyroclastic flows on the flanks of the volcanic center. Welding in the upper parts of these pyroclastic flow deposits indicates the high-temperature emplacement of the pyroclastic material and relatively slow cooling caused by the cushioning effect of the gas-vapor mixture and rapid deposition of younger pyroclastic units.  相似文献   

2.
3.
The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.  相似文献   

4.
Sedimentation and welding processes of the high temperature dilute pyroclastic density currents and fallout erupted at 7.3 ka from the Kikai caldera are discussed based on the stratigraphy, texture, lithofacies characteristics, and components of the resulting deposits. The welded eruptive deposits, Unit B, were produced during the column collapse phase, following a large plinian eruption and preceding an ignimbrite eruption, and can be divided into two subunits, Units Bl and Bu. Unit Bl is primarily deposited in topographic depressions on proximal islands, and consists of multiple thin (< 1 m) flow units with stratified and cross-stratified facies with various degrees of welding. Each thin unit appears as a single aggradational unit, composed of a lower lithic-rich layer or pod and an upper welded pumice-rich layer. Lithic-rich parts are fines-depleted and are composed of altered country rock, fresh andesite lava, obsidian clasts with chilled margins, and boulders. The overlying Unit Bu shows densely welded stratified facies, composed of alternating lithic-rich and pumice-rich layers. The layers mantle lower units and are sometimes viscously deformed by ballistics. The sedimentary characteristics of Unit Bl such as welded stratified or cross-stratified facies indicate that high temperature dilute pyroclastic density currents were repeatedly generated from limited magma-water interactions. It is thought that dense brittle particles were segregated in a turbulent current and were immediately buried by deposition of hot, lighter pumice-rich particles, and that this process repeated many times. It is also suggested that the depositional temperature of eruptive materials was high and the eruptive style changed from a normal plinian eruption, through surge-generating explosions (Unit Bl), into an agglutinate-dominated fallout eruption (Unit Bu). On the basis of field data, welded pyroclastic surge deposits could be produced only under specific conditions, such as (1) rapid accumulation of pyroclastic particles sufficiently hot to weld instantaneously upon deposition, and (2) elastic particles' interactions with substrate deformation. These physical conditions may be achieved within high temperature and highly energetic pyroclastic density currents produced by large-scale explosive eruptions.  相似文献   

5.
刘永顺  冯肖兵  聂保锋  彭年  孙善平 《岩石学报》2014,30(12):3671-3680
火山碎屑岩中的碎屑颗粒形态、分布和显微结构保存着岩浆房内岩浆的结晶状态、火山爆炸过程中的岩浆气泡化和碎裂作用以及火山碎屑堆积和变形过程的大量物理信息。为揭示北京西山沿河城地区东岭台组酸性火山碎屑流形成的物理过程,本文以东岭台组第三岩性段的酸性熔结火山碎屑岩的火山地质、岩相学研究为基础,应用分形理论和方法对酸性熔结火山碎屑岩中的碎屑形态的分形特征开展了定量研究。不同类型碎屑的表面和边界盒维数的数值范围大小具有一致性。玻屑变幅较大,石英晶屑和岩屑变幅较小,这说明碎屑的塑性和流变性对碎屑形态多样性的影响较大。在几类碎屑中,熔蚀石英的边界盒维数和周长-面积法获得的分形维数最大,说明熔蚀作用对石英斑晶边界形态复杂性的影响超过了其它机制对火山碎屑形态复杂性的影响。东岭台组酸性火山碎屑岩中的熔蚀石英、石英碎屑、长石碎屑、玻屑和岩屑的分形特征有明显差异,反映了火山喷发过程中围岩和岩浆性质、物理化学条件以及火山作用机制的差异。火山碎屑形态的分形特征和幂率规律,证明火山爆炸过程是一种自组织临界条件下发生的。  相似文献   

6.
火山碎屑密度流是一种危险的火山活动现象,也是一种重要的盆地物源供给方式,对其沉积机制的研究具有灾害预防和油气勘探的双重意义。松辽盆地东南隆起区九台营城煤矿地区白垩系营城组古火山机构保存良好,发育有典型的火山碎屑密度流沉积物。本文在精细刻画火山碎屑岩的岩石结构、沉积构造的基础上,运用薄片观察和沉积物粒度统计的方法,从物质来源、搬运机制和就位方式角度系统地分析了火山碎屑密度流的整个沉积过程,并结合国内外火山学、沉积学的研究进展探讨了不同浓度火山碎屑密度流的沉积机制。研究区内的火山碎屑密度流沉积物可以划分为五种微相:①块状熔结角砾凝灰岩微相;②无序含集块凝灰角砾岩微相;③逆粒序或双粒序角砾凝灰岩微相;④正粒序角砾凝灰岩微相;⑤韵律层理凝灰岩微相。第一种微相具有熔结结构,可能形成于高挥发分岩浆喷发柱的垮塌,火山碎屑密度流的就位温度较高;后四种微相具有正常火山碎屑岩结构,可能形成于火山口的侧向爆炸,火山碎屑密度流的就位温度中等。沉积块状熔结角砾凝灰岩微相的火山碎屑密度流具有黏性碎屑流的流体特征,沉积物整体冻结就位;沉积无序含集块凝灰角砾岩微相和逆粒序或双粒序角砾凝灰岩微相的火山碎屑密度流具有颗粒流的流体特征,沉积物整体冻结就位;沉积正粒序角砾凝灰岩微相和韵律层理凝灰岩微相的火山碎屑密度流具有湍流的流体特征,沉积物连续加积就位。火山碎屑密度流的颗粒浓度是一个连续变量,但流体性质可能会发生突变,稀释的火山碎屑密度流的沉积机制符合下部流动边界模型,稠密的火山碎屑密度流的沉积机制符合层流(碎屑流或颗粒流)模型。  相似文献   

7.
ABSTRACT The Cagayan basin of Northern Luzon, an interarc basin 250 km long and 80 km wide, contains a 900 m thick sequence of Plio-Pleistocene fluvial and pyroclastic deposits. These deposits are divided into two formations, the Ilagan and Awidon Mesa, and three lithofacies associations. The facies, which are interpreted as meandering stream, braided stream, lahar, and pyroclastic flow and fall deposits, occur in a coarsening upward sequence. Meandering stream deposits interbedded with tuffs are overlain by braided stream deposits interbedded with coarser pyroclastic deposits; lahars and ignimbrites. The coarsening upward volcaniclastic deposits reflect the tectonic and volcanic evolution of the adjacent Cordillera Central volcanic arc. Uplift of the arc resulted in the progradation of coarser clastics further into the basin, the development of an alluvial fan, and migration of the basin depocentre away from the arc. The coarsening of the pyroclastic deposits reflects the development of a more proximal calc-alkaline volcanic belt in the maturing volcanic arc. The Cagayan basin sediments serve as an example of the type and sequence of non marine volcaniclastic sediments that may form in other interarc basins. This is because the tectonic and volcanic processes which controlled sedimentation in the Cagayan basin also affect other arc systems and will therefore control or significantly influence volcaniclastic sedimentation in other interarc basins.  相似文献   

8.
本文根据野外地质特征、岩相学特征以及岩石化学和地球化学特征,将火山碎屑流和涌浪堆积归纳为三种不同的岩相组分,即次火山型熔结凝灰岩组合、涌浪型熔结凝灰岩组合和灰流型熔结凝灰岩组合。对这三种不同的岩相组合,特别是其中的熔结凝灰岩的各类特征分别进行了详细论述和相互对比,并在此基础上提出了一个火山碎屑流和涌浪堆积的综合成因模式。  相似文献   

9.
Gabal Abu Had is an exposure of a volcanosedimentary succession in the North Eastern Desert Basement Complex. This succession includes intercalation of two major rock units, which are Dokhan Volcanics and Hammamat Group with different styles of formation, deposition environments, and genesis. Gabal Abu Had succession (GHS) is a northward dipping, c. 700-m-thick volcanosedimentary succession that rests on metavolcanic and old granitoid rocks with erosion unconformity. The lower part of GHS is dominated by volcaniclastic mass flow deposits and andesitic lava with interbedded gravely sandstone, whereas the upper sequence is composed of pyroclastic flow deposits including welded to no welded ignimbrite intercalated with gravely sandstone and massive clast-support conglomerate toward the top. Facies analysis study of GHS presented eight lithofacies types, which grouped into five lithofacies associations. The GHS basin started with effusive eruption of silica-poor volcanic center, which produced andesitic lava. A part of lava underwent hyaloclastic fragmentation due to the presence of fluvial water in places producing the volcaniclastic mass flow deposits. Later, an explosive silica-rich volcanic center affected the GHS basin and created the pyroclastic plain deposits (ignimbrite and bedded tuff). The fluvial braided river is still in action since the first eruption, producing gravely sandstone, which is intercalated with the volcanic sequence. The upper GHS is characterized by thick, massive, and clast-supported conglomerate (well rounded clasts up to 100 cm) of alluvial fan facies. Several silica-rich and silica-poor subvolcanic intrusions were emplaced in the GHS. The GHS development displays a cycle from low- to high-energy sedimentation under humid climatic conditions, in addition to extension and down faulting of basin shoulders. In comparison with Gabal El Urf, located to the north of GHS and was studied by El-Gameel (2010), the GHS is a lava-rich succession rather than Gabal El Urf succession which is mainly pyroclastic rich.  相似文献   

10.
The paper discusses patterns in the formation of composition, structure, and properties (physical and physical-mechanical) of volcaniclastic rocks, which are rocks of specific origin occupying an intermediate position between magmatic and sedimentary rocks. A database of volcaniclastic rocks, which contains geological, petrographic, and petrophysical information, has been created and analyzed. It has been shown that volcaniclastic rocks are a group that is extremely variable in its composition and properties, with rock properties varying within a wide range. It has been found that the conditions of volcaniclastic rock formation and subsequent lithification are the principal geological factors that determine their properties. There are two different origins of the properties of these rocks: (1) a long-term process of loose pyroclastic sediment lithification and (2) immediate origination of solid rock because of the welding or baking of a sedimentary material. The following series of volcaniclastic rocks, organized by the degree of declining their physical and mechanical parameters, has been reconstructed: clastic lavas → lava clastic rocks → ignimbrites → tuffs → hyaloclastites → agglutinates.  相似文献   

11.
The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ± hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations.  相似文献   

12.
J. Stiefenhofer  D.J. Farrow   《Lithos》2004,76(1-4):139-160
The Mwadui pipe represents the largest diamondiferous kimberlite ever mined and is an almost perfectly preserved example of a kimberlitic crater in-fill, albeit without the tuff ring.

The geology of Mwadui can be subdivided into five geological units, viz. the primary pyroclastic kimberlite (PK), re-sedimented volcaniclastic kimberlite deposits (RVK), granite breccias (subdivided into two units), the turbidite deposits, and the yellow shales listed in approximate order of formation. The PK can be further subdivided into two units—lithic-rich ash and lapilli tuffs which dominate the succession, and lithic-poor juvenile-rich ash and lapilli tuffs. The lower crater is well bedded down to at least 684 m from present surface (extent of current drill data). The bedding is defined by the presence of juvenile-rich lapilli tuffs vs. lithic-rich lapilli tuffs, and the systematic variation in granite content and clast size within much of the lithic-rich lapilli tuffs. Four distinct types of bedding have been identified in the pyroclastic deposits. Diffuse zones characterised by increased granite abundance and size, and upward-fining units, represent the dominant types throughout the deposit.

Lateral heterogeneity was observed, in addition to the vertical changes, suggesting that the eruption was quite heterogeneous, or that more than one vent may have been present. The continuous nature of the bedding in the pyroclastic material and the lack of ash-partings suggest deposition from a high concentration (ejecta), sustained eruption column at times, e.g. the massive, very diffusely stratified deposits. The paucity of tractional bed forms suggest near vertical particle trajectories, i.e. a clear air-fall component, but the poorly sorted, matrix-supported nature of the deposits suggest that pyroclastic flow and/or surge processes may also have been active during the eruption.

Available diamond sampling data were examined and correlated with the geology. Data derive from the old 120 (37 m), 200 (61 m), 300 (92 m) and 1200 ft (366 m) levels, pits sunk during historical mining operations, drill logs, as well as more recent bench mapping. Correlating macro-diamond sample data and geology shows a clear relationship between diamond grade and lithology. Localised enrichment and dilution of the primary diamond grade has taken place in the upper reworked volcaniclastic deposits due to post-eruptive sedimentary in-fill processes. Clear distinction can be drawn between upper (re-sedimented) and lower (pyroclastic) crater deposits at Mwadui, both from a geological and diamond grade perspective.

Finally, an emplacement model for the Mwadui kimberlite is proposed. Geological evidence suggests that little or no sedimentary cover existed at the time of emplacement. The nature of the bedding within the pyroclastic deposits and the continuity of the bedding in the vertical dimension suggest that the eruption was continuous, but that the eruption column may have been heterogeneous, both petrologically as well as geometrically. Volcanic activity appears to have ceased thereafter and the crater was gradually filled with granite debris from the unstable crater walls and re-sedimented volcaniclastic material derived from the tuff ring.

The Mwadui kimberlite exhibits marked similarities compared to the Orapa kimberlite in Botswana.  相似文献   


13.
在郯庐断裂多期构造活动作用下,辽河坳陷东部凹陷发生了多期火山活动,致使中基性火山岩广泛发育,以玄武岩和粗面岩为主,可分为5相14亚相。以常规测井曲线特征为基础,结合电成像的分析,识别出了爆发相(火山碎屑流和热基浪亚相)、溢流相(玻质碎屑岩、板状熔岩流和复合熔岩流亚相)、侵出相(内带、中带和外带亚相)和火山沉积相(含外碎屑和再搬运火山碎屑沉积亚相)10种岩相/亚相:火山碎屑流亚相具"焊接"特征,热基浪亚相具层理特征;玻质碎屑岩亚相具高CNL的特征,板状熔岩流亚相DEN、CNLAC测井曲线显示微齿平滑的特征,而复合熔岩流亚相测井曲线呈指状叠加的特征;侵出相内带→中带→外带电阻率逐渐减小;含外碎屑和再搬运火山碎屑沉积亚相GR值范围不同,并且再搬运火山碎屑沉积亚相具水平层理特征。火山岩相控制原生储集空间的类型,并作用于后期的次生改造,从而影响储层的物性、储集性和有效性。复合熔岩流亚相储层孔隙发育,物性好,但由于内部纵向上结构不一致,非均质性强,因而储层含油性差。火山碎屑流亚相内部在纵向上岩性及结构相对一致,因而储层物性相对均一、分布集中,为有利的火山岩储层,可以作为东部凹陷进一步勘探开发的有利相带。  相似文献   

14.
三台地区下白垩统营城组一段岩石类型有隐爆角砾岩、角砾熔岩、熔结角砾岩、珍珠岩、流纹岩和凝灰岩,所属岩相为火山通道相、侵出相、喷溢相、爆发相。厘定古火山口位置的依据主要是通过分析隐爆角砾岩和珍珠岩的岩性岩相及其分布。整个火山机构划分为中心相组、近源相组和远源相组。中心相组即火山口相,主要包括火山通道相和侵出相,近源相组主要包括喷溢相,远源相组主要包括爆发相。相序(以火山口为基点)为火山通道相隐爆角砾岩亚相-侵出相中带亚相-侵出相内带亚相-喷溢相下部亚相-喷溢相中部亚相-爆发相热碎屑流亚相。近源相组较中心相组储层物性优越。其中喷溢相上部亚相是储层物性最好的岩相带。  相似文献   

15.
Throughout most of its geological evolution Etna has been characterized by the eruption of lava flows of a predominantly hawaiitic composition, but within the stratigraphical record there are four major sequences of pyroclastic materials: the Acireale tephra and lahars (˜100000 B.P.); the ‘lower tephra’ and Milo lahars (both ˜26000 B.P.); the Biancavilla ignimbrites (15–15500 B.P.) and the ‘upper tephra’ (˜5000–6000 B.P.). This paper reports investigations carried out on these deposits in order to determine their stratigraphy, petrology, sedimentology, and likely origins. Whereas the Biancavilla ignimbrites were generated when a more evolved, gas-charged magma (benmoreite) was being produced by the volcano, the other suites of pyroclastic deposits were erupted from hawaiitic magmas—similar to those that have characterized the volcano during historical times. These deposits resulted from two processes: violent strombolian activity producing lapilli-rich. coarse, but well-sorted sediments, and hydrovolcanism when the mixing of water and magma in the conduit, brought about more violently explosive activity, giving rise to highly fragmented, poorly sorted, airfall tephra and lahars. Conditions favouring hydrovolcanism occurred at times in the volcano's history when palaeoenvironment and palaeogeography were conducive to the retention of large amounts of surface and subsurface water. Although climates favouring the retention of water at high levels on the volcano have occurred on many occasions in the history of the volcano, at ˜26.000 and ˜5000-6000 B.P. these occurred in conjunction with a construct of sufficient height and suitable configuration to allow storage of water and give rise to hydrovolcanic activity. The nature of the mechanisms responsible for the emplacement of these hydrovolcanic deposits is considered and it is concluded that airfall is the most probable process. Finally, the implications of this research for the assessment of hazard are reviewed.  相似文献   

16.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

17.
通过大比例尺野外岩性岩相填图、掌子面二维岩性岩相描述和详细岩矿鉴定,研究营城组三段内幕。本区营三段自下而上岩性序列表现为2个中基性到中酸性的火山岩旋回:①下部为石英安山岩、安山岩、安山质集块熔岩、安山质集块岩、安山质角砾岩和安山质角砾凝灰岩,向上过渡为砂质凝灰岩和英安质凝灰熔岩;②上部为玄武安山岩和玄武质集块熔岩,向上过渡为英安岩、珍珠岩、英安岩、英安质凝灰熔岩、英安质沉凝灰岩和英安岩。旋回①岩相纵向序列:溢流相下部亚相、火山通道相火山颈亚相、爆发相空落亚相、火山沉积相再搬运亚相、爆发相热碎屑流亚相。旋回②岩相纵向序列:溢流相上部亚相和下部亚相、火山通道相火山颈亚相、溢流相下部亚相、侵出相内带亚相、溢流相下部亚相、爆发相热碎屑流亚相、火山沉积相再搬运亚相、溢流相下部亚相。营三段火山岩发育于松辽盆地断陷末期,是盆地断陷转为坳陷过程的重要岩石记录。  相似文献   

18.
基于不同岩性、岩相条件从根本上决定了储集空间的发育程度与规模,所以找火山岩的储层集中表现为火山岩相、亚相的识别。文中以松辽盆地庆深气田为例,重点研究了深层火山碎屑熔岩形成机理及其在火山岩地质相和测井相识别中的意义。研究表明,火山碎屑熔岩类火山岩常见火山碎屑流、泡沫熔岩流、岩流自碎作用、近地表隐爆作用、再熔结(胶结)型5种成因类型,且不同成因火山碎屑熔岩具有明显不同的矿物岩石学特征和测井响应特征。根据其形成机理、矿物岩石学特征和FMI成像特征,认为上述5种成因类型的火山碎屑熔岩分别发育于爆发相热碎屑流亚相、介于爆发相和喷溢相之间的爆溢相、喷溢相、火山通道相隐爆角砾岩亚相、火山通道相火山颈亚相或近火山口相。该研究成果对于促进火山岩相、亚相的准确识别和优质储层的有效预测具有重要的指导意义。  相似文献   

19.
The Hianana Volcanics consist of bedded tuff and dacitic lava that form a locally mappable unit within the extensive, Late Permian silicic volcanic sequence of northeastern New South Wales. Principal components of the bedded tuff are crystal and volcanic lithic fragments ranging from coarse ash to lapilli, accompanied by variable amounts of fine ash matrix. Well denned plane parallel thin bedding is characteristic. Sandwave bed forms, including low‐angle cross‐beds and wavy beds, are confined to an area of 2–3 km2 coinciding with the thickest sections (70 m) of bedded tuff. A high‐aspect ratio flow of porphyritic dacitic lava overlies the bedded tuff in the same area. The setting, lithofacies, extent and geometry of the bedded tuffs of the Hianana Volcanics are comparable with modern tuff rings which are composed of the deposits from base surges generated by explosive phreatomagmatic eruptions at primary volcanic vents. Many of these have also discharged lava late in their activity. Proximal parts of the Hianana tuff ring were buried by the porphyritic lava after the phreatomagmatic eruptions had ceased. In more distal sections, the bedded tuff is less than 10 m thick and dominantly comprises fine grained, plane parallel, very thin beds and laminae; these features suggest an origin by fallout from ash clouds that accompanied the phreatomagmatic eruptions. The distal ash was covered and preserved from erosion by a layer of welded ignimbrite, the source of which is unknown.  相似文献   

20.
长白山天池火山气象站期晚期碱流质熔岩的岩石学研究   总被引:3,自引:0,他引:3  
通过野外火山堆积物的相分析、岩石显微鉴定和造岩矿物化学分析,可以确认气象站期晚期碱流质熔岩是典型的溢流熔浆冷却固结形成的,不是碎成熔岩。熔岩流的顶部和底部是黑曜质碱流岩的表壳相,中部是致密厚层与薄层相间产出的、具有塑性变形的碱流岩的内部相。组成熔岩流的岩石具有斑状和聚斑结构,从表壳相向内部相基质依次发育玻璃质结构、(微)球粒结构和霏细结构。斑晶矿物钠透长石、钙铁辉石、铁橄榄石和少量石英出现在熔岩流的所有岩相中,而钠铁闪石、铁钠透闪石和钛铁矿则作为内部相基质中的显微斑晶出现。气象站期晚期碱流质熔岩是过铝质、过碱性的钠闪碱流质熔岩,属于碱性系列,与意大利潘泰莱里亚岛碱流岩相比,富Si、Al、K、Mg、Ca和P而贫Fe、Na、Mn和Ti。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号