首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. V. Mints 《Geotectonics》2007,41(4):257-280
The evolution of the North American, East European, and Siberian cratons is considered. The Paleoproterozoic juvenile associations concentrate largely within mobile belts of two types: (1) volcanic-sedimentary and volcanic-plutonic belts composed of low-grade metamorphic rocks of greenschist to low-temperature amphibolite facies and (2) granulite-gneiss belts with a predominance of high-grade metamorphic rocks of high-temperature amphibolite to ultrahigh-temperature granulite facies. The first kind of mobile belt includes paleosutures made up of not only oceanic and island-arc rock associations formed in the process of evolution of relatively short-lived oceans of the Red Sea type but also peripheral accretionary orogens consisting of oceanic, island-arc, and backarc terranes accreted to continental margins. The formation of the second kind of mobile belt was related to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and deposits of pyroclastic flows; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that, in addition, spreads over the fill of rift depressions. The evolution of mobile belts pertaining to both types ended with thrusting in a collisional setting. Five periods are recognized in Paleoproterozoic history: (1) origin and development of a superplume in the mantle that underlay the Neoarchean supercontinent; this process resulted in separation and displacement of the Fennoscandian fragment of the supercontinent (2.51–2.44 Ga); (2) a period of relatively quiet intraplate evolution complicated by locally developed plume-and plate-tectonic processes (2.44–2.0 (2.11) Ga); (3) the origin of a new superplume in the subcontinental mantle (2.0–1.95 Ga); (4) the complex combination of intense global plume-and plate-tectonic processes that led to the partial breakup of the supercontinent, its subsequent renascence and the accompanying formation of collisional orogens in the inner domains of the renewed Paleoproterozoic supercontinent, and the emergence of accretionary orogens along some of its margins (1.95–1.75 (1.71) Ga); and (5) postorogenic and anorogenic magmatism and metamorphism (<1.75 Ga).  相似文献   

2.
The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.  相似文献   

3.
Assembly and Breakup of Rodinia (Some results of IGCP project 440)   总被引:2,自引:0,他引:2  
The principal results of project 440 “Assembly and Breakup of Rodinia” of the International Geological Correlation Programme (IGCP) are reviewed in this work. A map of that supercontinent compiled using geological and paleomagnetic data describes global paleogeography 900 Ma ago. The assembly of Rodinia, which comprised most of Precambrian continental blocks, lasted ca. 400 m.y. (from 1300 to 900 Ma). Its breakup presumably triggered by mantle superplume took place between 830 and 650 Ma. The correlation between tectonic events in different continental blocks is considered. Some problems concerning the Rodinia reconstruction and history, e.g., the slow growth of juvenile crust and effects of mantle-plume events during the amalgamation period and of glaciations at the breakup time, are discussed. The latter caused changes in the biosphere and climate, whereas postglacial periods stimulated progress in biota evolution.  相似文献   

4.
The available geological, geochronological and isotopic data on the felsic magmatic and related rocks from South Siberia, Transbaikalia and Mongolia are summarized to improve our understanding of the mechanisms and processes of the Phanerozoic crustal growth in the Central Asian mobile belt (CAMB). The following isotope provinces have been recognised: ‘Precambrian’ (TDM=3.3–2.9 and 2.5–0.9 Ga) at the microcontinental blocks, ‘Caledonian’ (TDM=1.1–0.55 Ga), ‘Hercynian’ (TDM=0.8–0.5 Ma) and ‘Indosinian’ (TDM=0.3 Ga) that coincide with coeval tectonic zones and formed at 570–475, 420–320 and 310–220 Ma. Continental crust of the microcontinents is underlain by, or intermixed with, ‘juvenile’ crust as evidenced by its isotopic heterogeneity. The continental crust of the Caledonian, Hercynian and Indosinian provinces is isotopically homogeneous and was produced from respective juvenile sources with addition of old crustal material in the island arcs or active continental margin environments. The crustal growth in the CAMB had episodic character and important crust-forming events took place in the Phanerozoic. Formation of the CAMB was connected with break up of the Rodinia supercontinent in consequence of creation of the South-Pacific hot superplume. Intraplate magmatism preceding and accompanying permanently other magmatic activity in the CAMB was caused by influence of the long-term South-Pacific plume or the Asian plume damping since the Devonian.  相似文献   

5.
Geological history from the late Palaeoproterozoic to early Neoproterozoic is dominated by the formation of the supercontinent Columbia, and its break-up and re-amalgamation into the next supercontinent, Rodinia. On a global scale, major orogenic events have been tied to the formation of either of these supercontinents, and records of extension are commonly linked to break-up events. Presented here is a synopsis of the geological evolution of southwest Fennoscandia during the ca. 1.9–0.9 Ga period. This region records a protracted history of continental growth and reworking in a long-lived accretionary orogen. Three major periods of continental growth are defined by the Transscandinavian Igneous Belt (1.86–1.66 Ga), Gothian (1.66–1.52 Ga), and Telemarkian (1.52–1.48 Ga) domains. The 1.47–1.38 Ga Hallandian–Danopolonian period featured reorganization of the subduction zone and over-riding plates, with limited evidence for continental collision. During the subsequent 1.38–1.15 Ga interval, the region is interpreted as being located inboard of a convergent margin that is not preserved today and hosted magmatism and sedimentation related to inboard extensional events. The 1.15–0.9 Ga period is host to Sveconorwegian orogenesis that marks the end of this long-lived accretionary orogen and features significant crustal deformation, metamorphism, and magmatism. Collision of an indenter, typically Amazonia, is commonly inferred for the cause of widespread Sveconorwegian orogenesis, but this remains inconclusive. An alternative is that orogenesis merely represents subduction, terrane accretion, crustal thickening, and burial and exhumation of continental crust, along an accretionary margin. During the Mesoproterozoic, southwest Fennoscandia was part of a much larger accretionary orogen that grew on the edge of the Columbia supercontinent and included Laurentia and Amazonia amongst other cratons. The chain of convergent margins along the western Pacific is the best analogue for this setting of Proterozoic crustal growth and tectonism.  相似文献   

6.
《Precambrian Research》2005,136(2):159-175
Juvenile Neoproterozoic dioritic, tonalitic, trondhjemitic and granodioritic gneisses in the São Gabriel block, southern Brazil, have been identified by geochronologic studies. Age proposals for associated (ultra-)mafic metavolcanic and metasedimentary rocks, however, range from Archean to Neoproterozoic. Whole rock Sm–Nd analyses presented here support a Neoproterozoic age for these rocks. TDM model ages of the (ultra-)mafic metavolcanic rocks range between 0.65 and 1.35 Ga with ɛNd(t) positive values between 3.16 and 6.87; TDM model ages of metasedimentary and metavolcanoclastic rocks vary between 0.77 and 1.19 Ga with ɛNd(t) values between 1.2 and 6.23; tonalitic calc-alkaline gneisses show ɛNd(t) values of 4.34 and 6.3 and TDM model ages of 0.89 and 0.72 Ga, respectively. A late-kinematic granite (Santa Zélia granite) display slightly negative ɛNd(t) values (−1.6) and a higher TDM model age of about 1.4 Ga. These data support the existence of Meso/Neoproterozoic juvenile oceanic crust and island arc rocks during the Brasiliano orogenic events. The main source rocks of the metasedimentary units are previously formed juvenile rocks. The data also indicate minor assimilation of older crustal material and/or contamination of the melts by radiogenic Nd released from older rocks on the subducting slab. Existence of widespread old sialic crust in the subduction zone environment, however, can be ruled out indicating important orogenic accretion between 0.9 and 0.7 Ga. A geotectonic model for the São Gabriel block and the eastern margin of the Rio de la Plata craton comprises eastward subduction and following accretion of an intra-oceanic island arc between 0.9 and 0.8 Ga and a subsequent westward subduction with formation of an active continental margin at the eastern margin of the Rio de la Plata craton between 0.8 and 0.7 Ga. We postulate that the juvenile rocks of São Gabriel block represent relics of a Neoproterozoic ocean between the Rio de la Plata craton and a continental block (Encantadas block) possibly derived from the Kalahari craton. Subduction and arc accretion began roughly coeval with the initial stages of the break-up of Rodinia (0.9 Ga) and indicate a peripheric Rio de la Plata craton in relation to the Rodinia supercontinent with evolution from a passive margin to an active margin in the beginning of the Neoproterozoic Brasiliano orogenic events.  相似文献   

7.
By the analysis of the published zircon U-Pb ages and Hf isotope data, this paper firstly presents a comprehensive review about the staggered growth and reworking of early Precambrian continental crust in Alxa Block. The results show that the ancient crustal remnants of Alxa Block was formed in Meso-Paleo Archean, which was recorded by 3.0~3.6 Ga detrital zircons and Hf model ages. The early crustal growth of Alxa Block could be traced back to early Paleo-archean. Currently, the oldest zircon U-Pb age is about 3.6 Ga. Analogous to the other places of North China Craton, the Alxa Block underwent two-stage crustal growth at 2.7~2.9 Ga and 2.5~2.6 Ga respectively, and the former might be wider. The ~2.5 Ga (TTG) tectono-magmatic event, which represents the North China continent’s cratonization, also existed in Alxa Block. The corresponding zircon Hf isotope data indicate that the TTGs were mainly derived by melting of 2.7~2.9 Ga juvenile crust, possibly by mixing with a certain ancient crust, and a small portion was produced by instant reworking of 2.5~2.6 Ga juvenile crust. Proceeding to Paleo-proterozoic, the Alxa Block underwent multi-stage tectono-magmatic events, approximately peaked at 2.30~2.35 Ga, 2.15~2.17 Ga, 2.00~2.10 Ga, 1.95~1.98 Ga and ~1.90 Ga. The continental crust was mainly formed by reworking of 2.7~2.9 Ga and 2.5~2.6 Ga juvenile crust, simultaneously by a fraction of ~2.1 Ga juvenile crust. In Paleo-proterozoic, not only the Archean crustal reworking but also the juvenile crustal growth existed in Alxa Block.  相似文献   

8.
South China is characterized by widespread igneous rocks with varied ages and nature in its eastern part, which contain abundant Precambrian xenocrystic/inherited zircons that bear important information of the composition and evolution of the underlying ancient crust. This paper for the first time presents a compiled U-Pb age database of 1416 Precambrian xenocrystic/inherited zircons from igneous rocks in eastern South China, and attempts to provide a constraint on the Precambrian crustal evolution of the constituent Yangtze and Cathaysia blocks. These xenocrystic/inherited zircons, as a conceivable proxy of the unexposed continental crust, document three major tectonothermal events related to continental accretion and subsequent modification that possibly built the continental crust of the eastern Yangtze Block (EYB) at 2.70–2.40 Ga, 2.10–1.55 Ga, and 0.95–0.70 Ga, and the Cathaysia Block (CAB) at 2.70–2.40 Ga, 2.05–1.75 Ga, and 1.10–0.70 Ga, pointing to a complex Precambrian evolutionary history for South China. The EYB zircons are unexpectedly dominated by a 2.10–1.55 Ga age population that shows a multimodal distribution with peaks at 2.05 Ga, 2.0 Ga, 1.90 Ga, 1.85 Ga, and 1.58 Ga, and the CAB zircons are characterized by a unimodal 2.0–1.75 Ga age population that conspicuously peaked at 1.85 Ga, both of which overlap with the tenure of the Nuna supercontinent. These xenocrystic/inherited zircons from both blocks generally have negative εHf(t) values, which in combination with coeval regional magmatic and metamorphic records can assist to trace a possible prolonged (2.05–1.75 Ga) orogenic process in the EYB and a short-lived (1.9–1.8 Ga) orogeny in the CAB. Such orogeneses are proposed to be correlated with the assembly of the Nuna supercontinent.  相似文献   

9.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   

10.
The results of correlation between geological events in the period of 2.8?2.0 Ga provide grounds to assume that the Sarmatia lithospheric megablock definable in the southern part of the East European Craton belonged to the ancient Vaalbara supercontinent consisting of the Pilbara and Kaapvaal cratons. In the period of 2.8?2.6 Ga, all of them represented fragments of the continental crust consolidated at approximately 2.8 Ga and subjected to continental rifting, which was accompanied by intense basite volcanism. In the period of 2.50?2.45 Ga, these three cratons were characterized by similar tectonic settings and accumulation of banded iron formations. Precisely these banded iron formations of the largest Transvaal, Hamersley, Kursk, and Kremenchug?Krivoi Rog iron ore basins accumulated in the period of 2.50?2.45 Ga in a single oceanic basin serve as a basis for adequate paleotectonic reconstructions of the Vaalbara supercontinent. In the period of 2.45?2.20 Ga, all three cratons were subjected to a long-lasting break in sedimentation followed by activation of continental rifting with terrigenous sediment deposition, which terminated with basite volcanism ca. 2.2 Ga. These events gave start to the Vaalbara breakup, which represented a multistage process with alternating divergence and convergence phases of supercontinent fragments until the Kaapvaal and Zimbabwe, Pilbara and Yilgarn, and Sarmatia and Volgo-Uralia cratons, respectively, became eventually united.  相似文献   

11.
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re–Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re–Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re–Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2–1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.  相似文献   

12.
A summary of original Nd isotopic data on granitoids, silicic volcanics, and metasediments of the Baikal Fold Region is presented. The available Nd isotopic data, in combination with new geological and geochronological evidence, allowed recognition of the Early Baikalian (1000 ± 100 to 720 ± 20 Ma) and Late Baikalian (700 ± 10 to 590 ± 5 Ma) tectonic cycles in the geological evolution. The tectonic stacking, deformation, metamorphism, and granite formation are related to orogenic events that occurred 0.80–0.78 Ga and 0.61–0.59 Ga ago. The crust-forming events dated at 1.0–0.8 Ga and 0.70–0.62 Ga pertain to each cycle. The Early Baikalian crust formation developed largely in the relatively narrow and spatially separated Kichera and Param-Shamansky zones of troughs in the Baikal-Muya Belt. The formation and reworking of the Late Baikalian continental crust played the leading role in the Karalon-Mamakan, Yana, and Kater-Uakit zones and in the Svetlinsky Subzone of the Anamakit-Muya Zone in the Baikal-Muya Belt. In general, three large historical periods are recognized in the evolution of the Baikal Fold Region. The Early Baikalian period was characterized by prevalence of reworking of the older continental crust. The Late Baikalian-Early Caledonian period is distinguished by more extensive formation and transformation of the juvenile crust. The third, Late Paleozoic period was marked by reworking of the continental crust with juxtaposition of all older crustal protoliths. Two models of paleogeodynamic evolution of the Baikalian fold complexes are considered: (1) the autochthonous model that corresponds to the formation of suboceanic crust in rift-related basins of the Red Sea type and its subsequent reworking in the course of collision-related squeezing of paleorifts and intertrough basins and (2) the allochthonous model that implies the formation of fragments of the Baikal-Muya Belt at the shelf of the Rodinia supercontinent, their subsequent participation in the evolution of the Paleoasian ocean, and their eventual juxtaposition during Late Baikalian and Early Caledonian events in the structure of the Caledonian Siberian Superterrane of the Central Asian Foldbelt.  相似文献   

13.
The tonalite-trondhjemite-granite (TTG) crust has been considered to be buoyant and hence impossible to be subducted into the deep mantle. However, recent studies on the juvenile arc in the western Pacific region indicate that immature island arcs subduct into the deep mantle in most cases, except in the case of parallel arc collision. Moreover, sediment trapped subduction and tectonic erosion are also common. This has important implications in evaluating the role of TTG crust in the deep mantle and probably on the bottom of the mantle. Because the TTG crust is enriched in K, U and Th, ca. 20 times more than that of CI chondrite, the accumulated TTG on the Core Mantle Boundary (CMB) would have played a critical role to initiate plumes or superplumes radiating from the thermal boundary layer, particularly after 2.0 Ga, related to the origin of superplume-supercontinent cycle. This is because selective subduction of oceanic lithosphere including sediment-trapped subduction, tectonic erosion and arc- and microcontinent-subduction proceeded under the supercontinent before the final amalgamation ca. 200-300 million years after the formation of the nuclei. We speculate the mechanism of superplume evolution through the subduction of TTG-crust and propose that this process might have played a dominant role in supercontinent breakup.  相似文献   

14.
The intraplate activity within the Siberian Craton in the Phanerozoic is related to continental migration above the hot spot agglomeration compared to the African superplume. The continuity of intraplate activity within this superplume testifies to its age identity to the antipodal to the Rodinian superplume that destroyed the Rodinia supercontinent. This allowed us to conclude that the African superplume has existed for no less than 1 Ga. Because the Rodinian and Pacific superplumes are compared, it may be gathered that superplumes are the most long-lived deep-seated structures of the Earth. Their relation to the formation of supercontinents probably reflects the antiphased activity caused by the thermostating effect and energy accumulation by superplumes when being overlapped by supercontinents. When analyzing the evolution and generation of modern continents, it is necessary to consider both processes related to the plate boundaries and the activity of superplumes determining the intraplate magmatism therein.  相似文献   

15.
A worldwide database of over 13,800 integrated U–Pb and Hf-isotope analyses of zircon, derived largely from detrital sources, has been used to examine processes of crustal evolution on a global scale, and to test existing models for the growth of continental crust through time. In this study we introduce a new approach to quantitatively estimating the proportion of juvenile material added to the crust at any given time during its evolution. This estimate is then used to model the crustal growth rate over the 4.56 Ga of Earth's history. The modelling suggests that there was little episodicity in the production of new crust, as opposed to peaks in magmatic ages. The distribution of age-Hf isotope data from zircons worldwide implies that at least 60% of the existing continental crust separated from the mantle before 2.5 Ga. However, taking into consideration new evidence coming from geophysical data, the formation of most continental crust early in Earth's history (at least 70% before 2.5 Ga) is even more probable. Thus, crustal reworking has dominated over net juvenile additions to the continental crust, at least since the end of the Archean. Moreover, the juvenile proportion of newly formed crust decreases stepwise through time: it is about 70% in the 4.0–2.2 Ga time interval, about 50% in the 1.8–0.6 Ga time interval, and possibly less than 50% after 0.6 Ga. These changes may be related to the formation of supercontinents.  相似文献   

16.
The Tarim Craton is one of three large cratons in China. Presently, there is only scant information concerning its crustal evolutionary history because most of the existing geochronological studies have lacked a combined isotopic analysis, especially an in situ Lu–Hf isotope analysis of zircon. In this study, Precambrian basement rocks from the Kuluketage and Dunhuang Blocks in the northeastern portion of the Tarim Craton have been analyzed for combined in situ laser ablation ICP-(MC)-MS zircon U–Pb and Lu–Hf isotopic analyses, as well as whole rock elements, to constrain their protoliths, forming ages and magma sources. Two magmatic events from the Kuluketage Block at ∼2.4 Ga and ∼1.85 Ga are revealed, and three stages of magmatic events are detected in the Dunhuang Block, i.e., ∼2.0 Ga, ∼1.85 Ga and ∼1.75 Ga. The ∼1.85 Ga magmatic rocks from both areas were derived from an isotopically similar crustal source under the same tectonic settings, suggesting that the Kuluketage and Dunhuang Blocks are part of the uniform Precambrian basement of the Tarim Craton. Zircon Hf model ages of the ∼2.4 Ga magmatism indicate that the crust of the Tarim Craton may have been formed as early as the Paleoarchean period. The ∼2.0 Ga mafic rock from the Dunhuang Block was formed in an active continental margin setting, representing an important crustal growth event of the Tarim Craton in the mid-Paleoproterozoic that coincides with the global episode of crust formation during the assembly of the Columbia supercontinent. The ∼1.85 Ga event in the Kuluketage and Dunhuang Blocks primarily involved the reworking of the old crust and most likely related to the collisional event associated with the assembly of the Columbia supercontinent, while the ∼1.75 Ga magmatism in the Dunhuang Block resulted from a mixture of the reworked Archean crust with juvenile magmas and was most likely related to a post-collisional episode.  相似文献   

17.
The Protopangaea-Palaeopangaea model for the Precambrian continental crust predicts quasi-integrity reflecting a dominant Lid Tectonics defined by a palaeomagnetic record showing prolonged near-static polar behaviour during very long time intervals (~2.7–2.2, 1.5–1.2, and 0.75–0.6 Ga). Intervening times show polar loops radiating from the geometric centre of the crust explaining the anomalous Precambrian magnetic inclination bias. The crustal lid was a symmetrical crescent-shaped body confined to a single hemisphere on the globe comparable in form to the Phanerozoic supercontinent (Neo)Pangaea. There were two major transitions in the tectonic regime when prolonged near-static motion was succeeded by widespread tectonic-magmatic activity, and each coincided with the major isotopic/geochemical signatures in the Precambrian record. The first comprised a ~90° reconfiguration of crust and mantle at ~2.2 Ga terminating the long 2.7–2.2 Ga static interval; the second was the largest continental break-up event in geological history and is constrained to the Ediacaran Period at ~0.6 Ga by multiple isotopic and geochemical signatures and the subsidence history of marine passive margins. Break-up of the lid at ~0.6 Ga defines a transition from dominant Lid Tectonics to dominant Plate Tectonics and is the primary cause of contrasts between the Precambrian and Phanerozoic aeons of geological times. The long interval of minimal continental motion in the mid-Proterozoic correlates with extensive emplacement of anorogenic anorthosite-rapakivi plutons unique to these times, and high-level emplacement was probably caused by blanketing of the mantle and comprehensive thermal weakening of the crust. Continental velocities were low during the two Proterozoic intervals characterized by profound glaciation (~2.4–2.2 and ~0.75–0.6 Ga) when partial or complete magmatic shutdown is likely to have reduced volcanic greenhouse gas production. Specific implications of Protopangaea-Palaeopangaea include: (i) support for recent evidence that 60–70% of the present continental crust had accreted by ~2.5 Ga; (ii) recognition from spatially constrained mineral provinces that sub-crustal lithosphere was already chemically differentiated by mid-Archaean times; (iii) strong axial alignment of younger greenstone belts, major Palaeoproterozoic shear zones, and later Meso–Neoproterozoic mobile/orogenic belts; (iv) concentration of anorogenic magmatism and progressive contraction of activity towards the orogenic margin subsequently to become the focus of Grenville (~1.1 Ga) orogenesis; and (v) late Neoproterozoic arc magmatism/tectonics at the instep margin of the continental crescent persisting until the Ediacaran continental break-up.  相似文献   

18.
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2014,30(10):2941-2950
古老陆壳物质的发现与鉴别是探索地球早期陆壳形成与演化历史的重要内容之一,锆石U-Pb年龄结合Hf同位素研究是该研究的重要手段。本文通过对胶北地体内一个长英质副片麻岩中的锆石开展系统的原位U-Pb定年和微量、稀土元素分析,获得了多个太古宙早期的锆石。根据这些锆石的阴极发光图像、Th/U比值及稀土元素球粒陨石标准化配分模式,它们具有典型岩浆锆石的特征,其中2个分析点给出了3413Ma和3400Ma(~3.4Ga)的锆石U-Pb年龄,7个分析点给出3547±19Ma(MSWD=1.16)的锆石U-Pb年龄,指示太古宙早期的陆壳岩浆事件;结合华北克拉通其它地区的类似研究结果,暗示华北克拉通可能曾经存在比现今出露面积更大的太古宙早期的古老陆壳。这些古老锆石的Hf同位素分析显示,它们的εHf(t)值在-6.19~0.95之间,平均为-2.54,两阶段Hf模式年龄在3737~4353Ma之间,平均值为~4.1Ga,远大于锆石的U-Pb年龄,指示华北克拉通存在~4.1Ga的地壳增生作用及古老陆壳(3.55Ga)的再循环。  相似文献   

19.
We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga.The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than active margin settings and that the sedimentary mass significantly grew through addition of first-cycle sediments from young igneous basements, until after ∼1.3 Ga when sedimentary recycling became the dominant feature of sedimentary evolution. These findings, coupled with the lack of zircons older than 3.3 Ga in river sands, imply the emergence of large-scale continents at about 3.3 Ga with further rapid growth at around 1.3 Ga. This resulted in the major growth of the sedimentary mass between 3.3 and 1.3 Ga and the predominance of its cannibalistic recycling later.  相似文献   

20.
The model of supercontinent cycles is revisited on the basis of reevaluation of existing ideas on the geodynamics and tectonics of granulite gneiss belts and areals. Granulite-gneiss belts and areals of a regional scale correspond to mantle–plume (superplume) activity and form the major components of intracontinental orogens. The evolution of geodynamic settings of the Earth’s crust origin can be imagined as a “spiral sequence”: (1) interaction of mantle plumes and “embryonic” microplate tectonics during the Paleo- Mesoarchean (~3.80–2.75 Ga); (2) plume-tectonics and local plume-driven plate-tectonics within supercontinent during Neoarchean and Proterozoic (~2.75–0.85 Ga); (3) plate tectonics in the Phanerozoic along with a reduced role of mantle plumes starting from ~0.85 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号