首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Climate Policy》2013,13(1):19-33
Abstract

The two project-based Kyoto mechanisms, joint implementation (JI) and the clean development mechanism (CDM), require a determination of the “baseline”, the development of greenhouse gas (GHG) emissions in the absence of the project. This paper examines, whether absolute (given in tCO2 equivalent) or relative baselines (“benchmarks”, given, e.g. in tCO2 equivalent/MWh) should be applied for JI/CDM projects in the energy sector. Accuracy of the GHG emission reduction and manageability of GHG emission balances are used as evaluation criteria. The results show that relative baselines are a more accurate instrument for the estimation of emission reductions in JI/CDM projects in the energy sector without posing significant additional risks to the management of GHG emission balances for large entities. In comparison to absolute baselines, relative baselines indicate in a more realistic and conservative manner the amount of emission reductions obtained in the energy system and give more appropriate incentives to project sponsors. The additional risks of relative baselines are likely to be small compared to the normal deviation of the domestic/internal GHG emissions. The findings are in line with the Marrakesh Accords, which set restrictions to application of absolute baselines.  相似文献   

2.
Abstract

Joint Implementation (JI) and the Clean Development Mechanism (CDM) have been established under the Kyoto Protocol as project-based instruments to mitigate greenhouse gases of the industrialized countries to the levels imposed by their Kyoto commitments. An unresolved issue associated with the implementation of these two flexibility mechanisms, concerns the choice of the appropriate baseline for calculating the emission reductions in JI or CDM projects. This article describes a computerized tool that constructs and compares different types of standardized baselines and benchmarks. The analysis focuses on the suitability of several different types of benchmarks for assessing the emission reductions of certain types of projects. The analysis is also expanded into a discussion of the extent to which benchmarks reduce the crediting of non-additional projects and limit the risk of missed additional investments. This tool has been applied to actual JI and CDM projects in the Russian Federation and Indonesia.  相似文献   

3.
《Climate Policy》2001,1(1):55-73
The Kyoto Protocol defines two project-based flexibility mechanisms: joint implementation (JI) and the clean development mechanism (CDM). The main methodological problem associated with both these mechanisms is the choice of an appropriate baseline: since the baseline is, by definition, counterfactual, it imposes considerable uncertainty on the accounting framework. Little work to date has been carried out on trying to estimate how large this uncertainty might be for particular project types. This paper aims to fill this gap by proposing an approach to baseline construction which explicitly acknowledges this uncertainty. This approach is illustrated through the examination of pilot JI projects in the energy sector in eastern Europe, and then discussed in terms of its implications for climate policy. The results presented are estimates of the range of counterfactual uncertainty in greenhouse gas emission reductions based on the construction of a number of possible baselines for each project. This range is found to be about ±35% for demand side projects, ±45% for heat supply projects, ±55% for cogeneration projects, and ±60% for electricity supply projects. Estimates of uncertainty in the costs of the pilot projects are also found to be high. The paper discusses the problems arising from such large uncertainty and starts to indicate how this uncertainty may be managed.  相似文献   

4.
《Climate Policy》2013,13(1):55-73
Abstract

The Kyoto Protocol defines two project-based flexibility mechanisms: joint implementation (JI) and the cleandevelopment mechanism (CDM). The main methodological problem associated with both these mechanisms isthe choice of an appropriate baseline: since the baseline is, by definition, counterfactual, it imposes considerable uncertainty on the accounting framework. Little work to date has been carried out on trying to estimate how largethis uncertainty might be for particular project types. This paper aims to fill this gap by proposing an approach to baseline construction which explicitly acknowledges this uncertainty. This approach is illustrated through theexamination of pilot JI projects in the energy sector in eastern Europe, and then discussed in terms of its implicationsfor climate policy. The results presented are estimates of the range of counterfactual uncertainty in greenhouse gas emission reductions based on the construction of a number of possible baselines for each project. This range is found to be about ±35% for demand side projects, ±45% for heat supply projects, ±55% for cogeneration projects, and ±60% for electricity supply projects. Estimates of uncertainty in the costs of the pilot projects are also found to be high. The paper discusses the problems arising from such large uncertainty and starts to indicate how this uncertainty may be managed.  相似文献   

5.
There has been considerable debate on the merits of standardized baselines (SBLs) in the clean development mechanism (CDM), and how such baselines could reduce transaction costs for CDM projects. It has not been considered whether the voluntary versus mandatory use of SBLs by CDM project developers can affect the environmental integrity of the CDM. An example is given in which SBLs are applied to a homogeneous output industry in order to illustrate how the voluntary use of SBLs could lead – even with relatively stringent benchmarks – to over-crediting of emission reduction credits.  相似文献   

6.
This article presents an analytical framework for analyzing Clean Development Mechanism (CDM) projects in terms of their contribution to employment generation, equal distribution of CDM returns, and improvement of local air quality. It assesses 16 officially registered CDM projects with regard to whether they fulfill the two objectives required by the Kyoto Protocol: greenhouse gas emission reductions and contribution to sustainable development in the host country. While a large part (72%) of the total portfolio’s expected Certified Emission Reductions (CERs) are likely to represent real and measurable emission reductions, less than 1% are likely to contribute significantly to sustainable development in the host country. According to our analysis, there are currently no UNFCCC registered CDM projects that are likely to fulfill the Kyoto Protocol’s twofold objective of simultaneously delivering greenhouse gas (GHG) emission reduction and contributing to sustainable development.  相似文献   

7.
《Climate Policy》2013,13(1):62-74
What is the potential for developing small-scale CDM projects in India to reduce enteric methane emissions from cattle and buffaloes? The issue of baseline setting for prospective CDM projects is a complex one in the Indian context. The baselines constructed on the basis of aggregate emission rates at the national level are unlikely to be precise as methane emission rates are influenced by the livestock and feed characteristics, which vary widely across regions in an agro-climatically diverse country like India. This calls for establishing a project specific baseline underpinned with regional methane emission rates. The various aspects of sustainable development that merit consideration in formulating a CDM project in the Indian dairy sector include; increasing the productivity of animals, increasing the net income of producers, decreasing the cost of milk production and the transfer of safe technologies. The projects in the sector would be able to meet the ‘additionality’ conditions of the CDM. However, there are a number of constraints in implementing the enteric methane mitigation strategies through a CDM project at the field level. The article discusses these technical, financial, socio-cultural and institutional barriers along with possible responses to these constraints.  相似文献   

8.
《Climate Policy》2013,13(2):851-864
The clean development mechanism (CDM) under the Kyoto Protocol allows industrialized countries to use credits from greenhouse gas (GHG) abatement projects in developing countries. A key requirement of the CDM is that the emission reductions be real, measurable and additional. This article uses data from registered projects to evaluate the extent to which these objectives are met by projects that reduce hydrofluorocarbon-23 (HFC-23) emissions in the production of hydrochlorofluorocarbon-22 (HCFC-22). The data show that HCFC-22 plants produced significantly less HFC-23 during periods when no emission credits could be claimed compared with periods when HFC-23 destruction could be credited under the CDM. Moreover, the total amount of HCFC-22 produced appears to be determined mainly by CDM rules. This suggests that the claimed emission reductions may partly not be real and that the CDM provides perverse incentives to generate more HFC-23. The accelerated phase-out of HCFCs under the Montreal Protocol on Substances that Deplete the Ozone Layer could worsen this situation. To address these issues an ambitious emission benchmark for the baseline HFC-23 emissions is proposed.  相似文献   

9.
《Climate Policy》2013,13(3):242-254
The Clean Development Mechanism (CDM) under the Kyoto Protocol allows industrialized countries to use credits from greenhouse gas (GHG) abatement projects in developing countries. A key requirement of the CDM is that the emission reductions be real, measurable and additional. This article evaluates how the additionality of CDM projects has been assessed in practice. The analysis is mainly based on a systematic evaluation of 93 registered CDM projects and comes to the conclusion that the current tools for demonstrating additionality are in need of substantial improvement. In particular, the application of the barrier analysis is highly subjective and difficult to validate in an objective and transparent manner. Key assumptions regarding additionality are often not substantiated with credible, documented evidence. In a considerable number of cases it is questionable whether the emission reductions are actually additional. Based on these findings, practical recommendations for improving the assessment of additionality are provided.  相似文献   

10.
Incorporating carbon offsets in the design of cap-and-trade programs remains a controversial issue because of its potential unintended impacts on emissions. At the heart of this discussion is the issue of crediting of emissions reductions. Projects can be correctly, over- or under-credited for their actual emissions reductions. We develop a unified framework that considers the supply of offsets within a cap-and-trade program that allows us to compare the relative impact of over-credited offsets and under-credited emissions reductions on overall emissions under different levels of baseline stringency and carbon prices. In the context of a national carbon pricing scheme that includes offsets, we find that the emissions impacts of over-credited offsets can be fully balanced out by under-credited emissions reductions without sacrificing a significant portion of the overall supply of offsets, provided emissions baselines are stringent enough. In the presence of high predicted business-as-usual (BAU) emissions uncertainty or low carbon prices, to maintain the environmental integrity of the program, baselines need to be set at stringent levels, in some cases below 50 percent of predicted BAU emissions. As predicted BAU emissions uncertainty declines or as the carbon market achieves higher equilibrium prices, however, less stringent baselines can balance out the emissions impacts of over-credited offsets and under-credited emissions reductions. These results imply that to maintain environmental integrity of offsets programs, baseline stringency should be tailored to project characteristics and market conditions that influence the proportion of over-credited offsets to under-credited emissions reductions.  相似文献   

11.
We can generate a net global GHG emission reduction from developing countries (in an UNFCCC term, non-Annex 1 Parties) without imposing targets on them, if we discount CERs generated from CDM projects. The CER discounting scheme means that a part or all of CDM credits, i.e., CERs, made by developing countries through unilateral CDM projects will be retired rather than sold to developed countries to increase their emissions. It is not feasible to impose certain forms of target (whether sectoral or intensity targets) on non-Annex 1 whose emission trend is hard to predict and whose industrial structure is undergoing a rapid change.

Instead of imposing targets (a command and control approach), we should apply market instruments in generating a net global emission reduction from non-Annex 1. Since April 2005 when the first unilateral CDM was approved by the CDM Executive Board, CDM has been functioning as a market mechanism to provide incentives for developing countries to initiate their own emission reduction projects. As CDM is the only market mechanism engaging developing countries in the Kyoto Protocol, we should try to re-design CDM so that it can generate net global emission reductions by introducing the idea of discounting CERs. But in order to produce meaningful GHG emission reductions by discounting CERs, the project scope of CDM has to be expanded by relaxing project additionality criteria while maintaining strict technical additionality criteria. Agreeing on the CERs Discounting Scheme will have a better political chance than agreeing on imposing emission reduction targets on developing countries.  相似文献   

12.
The reductions in water use achieved by urban households in California during the recent drought are well documented. What is not documented is how those reductions were achieved. In this paper, we report on survey data from the Los Angeles and San Francisco Bay Areas describing the water conservation activities undertaken. We also examine variation in water conservation activities across households and adjust statistically for social desirability biases in the self-reports.Thanks go to UCLA's Survey Research Center for the data collection and especially to Eve Fielder, the Director, who took a particular interest in the study. We are also indebted to the Save the Earth Foundation for funding the earlier research projects that made the data collection for this paper possible. Finally, we wish to express our appreciation to three reviewers who helped us clarify a number of arguments in the paper.  相似文献   

13.
Transition countries are expected to become important players in the emerging market for greenhouse gas emission reductions, as they can cut emissions at a relatively low cost. However, the attractiveness of the region as a supplier of emission reductions will not only depend on its cost advantage. It will also depend on the business climate offered to carbon investors—factors like a well-functioning legal and regulatory system, economic and political stability and the capacity to process emission reduction projects efficiently. This paper looks at the carbon investment climate in the transition countries eligible for Joint Implementation (JI)—Russia, Ukraine, Croatia and the EU accession countries. It concludes that JI investors will face a clear trade-off between the scope for cheap JI on the one hand, and the quality of the business environment and JI institutions on the other. The countries with the highest potential for cheap emission reductions also tend to be the countries with the most difficult business climate and the least institutional capacity for JI. The most attractive JI locations may be median countries with a reasonable JI potential and an acceptable business climate, such as Bulgaria, Romania and the Slovak Republic.  相似文献   

14.
Abstract

Economic studies suggest that market leakage rates of greenhouse gas abatement can reach the two-digit percentage range. Although the Marrakesh Accords require Clean Development Mechanism (CDM) projects to account for leakage, most projects neglect market leakage. Insufficient leakage accounting is facilitated by a lack of applicable methods regarding the quantification and attribution of project-related leakage effects. This article proposes a method for attributing CDM-related market leakage effects to individual projects. To this purpose, alternative attribution methods are analysed. We find that project-specific approaches fail to take account of market leakage effects. Consequently, we propose to estimate aggregate market leakage effects and attribute them proportionally to individual projects. We suggest that predetermined commodity-specific leakage factors are applied by project developers to any emission reductions that are associated with a project's leakage-relevant demand or supply changes. This approach is conservative, equitable, incentive-compatible and applicable at manageable costs.  相似文献   

15.
《Climate Policy》2013,13(1):17-37
While many different greenhouse gas (GHG) mitigation technologies can be implemented under the Clean Development Mechanism (CDM), renewable energy technologies (RETs), in particular, are often viewed as one of the key solutions for achieving the CDM's goals: host-country sustainable development and cost-efficient emissions reductions. However, the viability of emission reduction projects like RETs is technology- and country-specific. To improve the CDM with respect to the diffusion of RETs, it is crucial to understand the factors that ultimately drive or hinder investments in these technologies. This study develops a methodology based on project-level, regional and global variables that can systematically assess the financial and environmental performance of CDM projects in different country contexts. We quantitatively show how six RETs (PV, wind, hydro, biomass, sewage, landfill) are impacted differently by the CDM and how this impact depends on regional conditions. While sewage and landfill are strongly affected independently of their location; wind, hydro and biomass projects experience small to medium impacts through the carbon price, and strongly depend on regional conditions. PV depends more on regional conditions than on the carbon price but is always unprofitable. Furthermore, we determine the carbon prices necessary to push these six RETs to profitability under various regional conditions. Based on these results, we derive policy recommendations to advance the interplay between international and domestic climate policy to further incentivize GHG emission reductions from RETs.  相似文献   

16.
What potential effect do flexible mechanisms under the Kyoto Protocol have on energy efficiency, fuel switching and the development of renewable energy sources for the eight post-communist EU Member States that accessed in 2004? These countries are chief candidates for hosting Joint Implementation (JI) projects and for participating in international emission trading, which may assist the implementation and financing of projects in these target areas. The potentials and barriers to Joint Implementation are reviewed, as well as the conditions under which international emission trading can influence the energy use of the selling country. Different strategies adopted by the host countries towards the application of these instruments, and their impact on sustainable energy development, are examined. The article concludes that the Kyoto flexibility mechanisms may play a positive, but rather limited, role in the sustainable energy development of the region, but the barriers to Joint Implementation may shift the emphasis towards transactions under the framework of international emission trading. If innovative mechanisms are tied to sustainable development goals, this may mobilize the energyefficiency potentials of these countries. An attractive opportunity exists to achieve energy efficiency and emission reductions, utilizing the revenues from allowance sales through ‘green investment’ schemes.  相似文献   

17.
Mitigating the potential large negative impacts of a change in the earth's climate will require strong and definite actions in the different economic sectors, particularly within agriculture and forestry. Specifically, soils deserve a close examination due to their large carbon mitigation potential. The Kyoto protocol establishes the possibility for crediting greenhouse gas emission reductions from forestry and agriculture activities. In most circumstances, particularly those regarding developing countries, greenhouse gas mitigation activities will be carried out through projects. These projects will have to meet a series of criteria, for the carbon benefits to be measurable, transparent, verifiable and certified. These criteria include: establishing credible baselines (without-project or reference scenario), additionality, permanence, quantifying and reducing potential leakage of greenhouse gases across project borders, coping with natural or human induced risks, accurately measuring changes in carbon stocks using carbon accounting techniques, and – in the case of the Clean DevelopmentMechanism – resulting in sustainable development benefits. In this paper we describe the methods and approaches that have been developed to cope with the different criteria and discuss their implications for carbon sequestration in soils. Soil carbon represents the largest carbon pool of terrestrial ecosystems, and has been estimated to have one of the largest potentials to sequester carbon worldwide. However, getting credits from soil carbon sequestration through project activities presents several challenges: the need to monitor small incremental changes in soil carbon content relative to large carbon pools, long-time periods to accrue the full carbon benefits, high local variability of soil carbon content, and relatively costly soil carbon measurement procedures. Also, the responses of soil C stocks to forestry and agriculture activities are complex and need careful attention. Specifically, the time dynamics of soil C responses to land use changes, the diversity of soil types, soil-plant interactions, and the availability of accurate soil C inventories, should be considered to successfully implement LULUCF projects.  相似文献   

18.
Abstract

Technology development and transfer is an important feature of both the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol. Although the Clean Development Mechanism (CDM) does not have an explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries. This article analyses the claims about technology transfer made by CDM project participants in their project design documents. Roughly one-third of all CDM projects, accounting for almost two-thirds of the annual emission reductions, involve technology transfer. Technology transfer varies widely across project types and is more common for larger projects and projects with foreign participants. Equipment transfer is more common for larger projects, while smaller projects involve transfers of both equipment and knowledge or of knowledge alone. Technology transfer does not appear to be closely related to country size or per-capita GDP, but a host country can influence the extent of technology transfer involved in its CDM projects.  相似文献   

19.
Transition countries are expected to become important players in the emerging market for greenhouse gas emission reductions, as they can cut emissions at a relatively low cost. However, the attractiveness of the region as a supplier of emission reductions will not only depend on its cost advantage. It will also depend on the business climate offered to carbon investors—factors like a well-functioning legal and regulatory system, economic and political stability and the capacity to process emission reduction projects efficiently. This paper looks at the carbon investment climate in the transition countries eligible for Joint Implementation (JI)—Russia, Ukraine, Croatia and the EU accession countries. It concludes that JI investors will face a clear trade-off between the scope for cheap JI on the one hand, and the quality of the business environment and JI institutions on the other. The countries with the highest potential for cheap emission reductions also tend to be the countries with the most difficult business climate and the least institutional capacity for JI. The most attractive JI locations may be median countries with a reasonable JI potential and an acceptable business climate, such as Bulgaria, Romania and the Slovak Republic.  相似文献   

20.
The recovery potential for waste energy from major Chinese industries is significant. For example, the estimated waste energy recovery potential is 40 million tons of coal equivalent in the iron and steel industry, accounting for ~10% of the total energy use in the industry. A detailed overview is presented of existing waste energy recovery Clean Development Mechanism (CDM) projects in China. These projects have been developed predominantly in large enterprises and rarely in small or medium-sized companies. The chance of waste energy projects being reviewed or rejected by the Executive Board is slightly higher and delivery rates of certified emission reductions are generally lower than other types of CDM projects. Several major barriers that inhibit project development are identified, such as the lack of CDM awareness or development capacity among many small or medium enterprises, low internal rates of return of the projects, increasing review risk and long delays in the registration process, the varying quality of intermediary buyers, a lack of local Chinese Designated Operational Entities, and policy implementation inconsistency at different levels. Suggestions are put forward to address these problems and such critical issues as additionality are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号