首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002–2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.  相似文献   

2.
C37–C39 alkenones were measured in time-series sediment trap samples collected from August 1998 to June 2000 at two depths in the seasonal sea ice region of the western Sea of Okhotsk, off Sakhalin, in order to investigate alkenone production and water-column processes in the region. Measurable export fluxes of alkenones are ranged from < 0.1 to 5.8 μg/m2/day and clearly showed that the alkenone production was restricted to autumn. In 1998, maximum export flux of alkenones occurred in September when surface water column was well stratified with low nutrients in the surface mixing layer. In the next year, the maximum flux is observed in October. Comparison between alkenone temperature and satellite based sea surface temperature (SST) shows that the estimated alkenone temperatures in August 1998 were found to be  10 °C lower than the temporal satellite SST, suggesting that alkenones are produced in surface to subsurface thermocline layers during the period. Annual mean flux of alkenones is lower in the lower traps than that of the upper traps, suggesting rapid degradation of alkenones in water column, but the UK37′ value is not significantly altered. This study indicates that UK37′ values preserved in the surface sediments off Sakhalin reflect the seasonal temperature signal of near surface water, rather than annual mean surface temperature.  相似文献   

3.
Fluxes of particulate carbon, nitrogen, phytoplankton pigments, biogenic silica and dry mass were measured using free-floating and moored sediment trap arrays in the Santa Monica Basin during the period from October 1985 to August 1990 as part of the California Basin Study (CaBS) Program. In field testing for potential sources of sediment trap biases, we found little significant or consistent difference in rate estimates between short-term drifting traps and long-term moored traps, between preserved and unpreserved traps in short-term experiments, between different preservatives (mercury or formalin) in long-term experiments, between different designs of small cylindrical traps, and between deep-moored cylindrical traps and large conical traps. We did, however, find that sediment trap samples collected and analyzed on 0.45 μm silver filters gave estimates of carbon and nitrogen fluxes about 25% higher than samples collected on GF/F glass-fiber filters. Concurrent trap deployments at two stations 18km apart revealed low mesoscale variability in flux estimates. Seasonal patterns in carbon and nitrogen flux were not evident in our data, but strong seasonality, with spring maxima and summer minima, were observed for fluxes of phaeopigments and biogenic silica out of the euphotic zone.Time-averaged rates of particulate flux for long-term trap deployments from January to August 1990, were 121, 18.8, 1.5, 67 and 633mg m−2d−1 at 110–135m for carbon, nitrogen, phaeopigment, biogenic silica and mass, respectively. Flux estimates to the basin floor (835–860m) were 50, 6.5, 0.64, 41.6 and 575mg m−2d−1 for the same parameters. The former estimates are constrained by and in good agreement with independent assessments of new production from nitrate uptake in the euphotic zone. The latter agree with rates previously inferred from the sedimentary record using 210Pb as a tracer. In addition, the difference in carbon estimates in the water column between the euphotic zone and the basin floor is consistent with the requirements for bacterial growth and metabolism at intermediate depths as measured by the thymidine method.  相似文献   

4.
大量研究表明,长链烯酮不饱和度(UK37?指数)可用于重建过去的海面温度(sea surface tempera-ture,SST),然而是否存在其他因素导致实际温度与重建的SST之间存在差异,以及重建的温度是代表年均SST还是季节性温度都仍有争议.除了反映温度,在受季节性海冰影响或SST较低的区域,长链烯酮C37:4...  相似文献   

5.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

6.
A total of 67 samples from the upper and lower sediment traps in the central South China Sea were analyzed, which were collected during 1993~1996. It is indicated that the distribution of stable isotope values, surface primary productivity, fluxes of total particulate matter, carbonate, biogenic opal, organic carbon, planktonic foraminiferal species and their total amount exhibit obviously seasonal and annual fluctuations. High values of the fluxes occurred in the prevailing periods of the northeastern and southwestern monsoons, and the low values occurred during the periods between the two monsoons. The fluxes of some planktonic foraminiferal species (Globigerinoides sacculifer, G. ruber, Globigerinita glutinata, Neogloboquadrina dutertrei) and their percentages also exhibit two prominent peaks during the prevailing periods of the northeastern and southwestern monsoons respectively, while those of Globigerina bulloides, Globorotalia menardii and Pulleniatina obliquiloculata only exhibit one peak in the prevailing periods of the northeastern monsoon. In addition, fluxes and percentages of Globigerinoides sacculifer and Globorotalia menardii as well as the fluxes of carbonate and total amount of planktonic foraminifera decrease gradually from 1993 to 1996, and those of Globigerina bulloides, Globigerinita glutinata and biogenic opal increase gradually from 1993 to 1996. The fluxes of carbonate and organic carbon in the upper trap are higher than those in the lower one. The study indicates that the seasonal and annual variations of the sediment fluxes and planktonic foraminiferal species are mainly controlled by the changes of surface primary productivity and hydrological conditions related to the East Asian monsoon. The lower carbonate and organic carbon fluxes in the lower trap are related to the dissolution.  相似文献   

7.
Latitudinal gradients in biodiversity are found in both terrestrial and marine environments, but little agreement exists on the mechanisms or ecological causes creating these patterns. Marine biodiversity patterns have been particularly challenging to document, because of the lack of appropriate data sets from ocean basins. We document latitudinal patterns of North Atlantic deep-sea benthic foraminifera and show that seasonality of primary productivity, as estimated from SeaWiFS satellite imagery, has a significant effect on diversity indices, with generally lower values of H(S), species ?, and species equitability found with high seasonality between 40 and 60°N. High foraminiferal diversity is not found in areas with phytodetritus deposition in the North Atlantic basin, which indicates that patch dynamics, biological disturbance, and sediment heterogeneity resulting from phytodetritus deposits do not create high deep-sea foraminiferal diversity. Annual resource stability, reflecting the timing of organic carbon flux and the mode of sedimentation, accounts for the benthic foraminiferal patterns found in this study and is an important variable structuring the deep-sea benthic foraminiferal community.  相似文献   

8.
Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m−2 y−1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m−2 d−1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m−2 d−1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A. Bacterial carbon flux, equivalent to 84.2 and 156 mgC m−2 y−1, accounted for 5–6.5% of the labile carbon flux (in trap A and B respectively) and for 22–41% protein pool of the settling particles. These results suggest that in the Cretan Sea, bacteria attached to the settling particles represent a potential food source of primary importance for deep-sea benthic communities.  相似文献   

9.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   

10.
The flux of planktonic foraminifera between 100 μm and 1 mm to the seafloor has been estimated for the central Pacific (abyssal plain east of Hawaii) and the tropical Atlantic (Demerara Abyssal Plain) based on sediment trap samples collected from various water depths. The faunas in each region are quite similar, with 4 to 5 species generally accounting for 70–80% of the total assemblage.

At both study sites, the total foraminiferal flux and the carbonate flux tend to decrease with depth. In addition, the flux of individual species of planktonic foraminifera varies significantly with depth, with the number of small, solution-susceptible species decreasing with increasing water depth. These results suggest that there is significant dissolution of small (< 150 μm) foraminifera as they settle through the water column. Material collected from the sediment-water interface directly below the Pacific sediment trap array contains no planktonic foraminifera, suggesting that the residence time of an individual on the seafloor before it dissolves, is extremely short.  相似文献   


11.
1993~1996年南海中部海洋沉降颗粒通量的季节和年际变化   总被引:7,自引:0,他引:7  
通过对南海中部1993~1996年获得的浅层和深层时间系列沉积物捕获器的样品分析,发现了稳定同位素值、颗粒总通量、碳酸盐、生物蛋白石、有机碳、表层初级生产力、浮游有孔虫总通量和属种的分布存在明显的季节性变化,其通量都是在东北季风和西南季风盛行期出现高值,在季风转向期出现低值.浮游有孔虫Globigerinoides sacculifer,G.ruber,Globigerinita glutinata,Neo-globoquadrina dutertrei等种的通量和相对百分含量也是在东北季风和西南季风盛行期都出现高值,但Globigerina bulloides,Globorotalia menardii和Pulleniatina obliquiloculata等种则在东北季风盛行期出现高值.分析还发现Globigerinoides sacculifer和Globorotalia menardii等种的通量和百分含量以及有孔虫总通量和碳酸盐通量等从1993到1996年存在下降趋势,而Globigerina.bulloides和Globigerinita glutinata的通量和百分含量以及生物蛋白石通量等在该期间显示为上升趋势.浅层捕获器样品中的碳酸盐和有机碳的通量比深层的高.研究表明海洋沉降通量和浮游有孔虫属种的季节和年际变化主要受与东亚季风相关的表层初级生产力和海洋水文条件变化所控制,深层捕获器样品中的碳酸盐和有机碳的通量低应与碳酸盐溶解作用有关.  相似文献   

12.
Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were related to regional variations in salinity, temperature and nutrient distribution. Annual fluxes of diatom opal range between 3 and 28 g m−2 yr−1, while planktonic foraminifera carbonate fluxes range between 6 and 23 g m−2 yr−1 and coccolithophorid carbonate fluxes range between 4 and 24 g m−2 yr−1. Annual planktonic foraminifera carbonate to coccolithophorid carbonate ratios range between 0.8 and 2.2 and coccolithophorid carbonate to diatom opal ratios range between 0.5 and 3.3.In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when nutrient-rich upwelled waters are advected over the trap site. In the oligotropic eastern Arabian Sea, coccolithophorid carbonate fluxes are high throughout the year. Planktonic foraminiferal carbonate fluxes are the major contributors to biogenic flux in the EIOT. In the northern and central Bay of Bengal, when surface salinity values drop sharply during the SW monsoon, there is a drastic reduction in planktonic foraminiferal carbonate fluxes, but coccolithophorid carbonate and diatom opal fluxes remain steady or continue to increase. Distinctly higher annual molar Sibio/Cinorg (>1) and Corg/Cinorg (>1.5) ratios are observed in the northern and central Bay of Bengal mainly due to lower foraminiferal carbonate production as a result of sharp salinity variations. We can thus infer that the enhanced freshwater supply from rivers should increase oceanic CO2 uptake. Its silicate supply favours the production of diatoms while the salinity drop produces conditions unfavourable for most planktonic foraminifera species.  相似文献   

13.
The flux of diatom valves and radiolarian shells obtained during short-term and annual sediment trap experiments at seven localities in the Atlantic sector of the Antarctic Ocean (in the Drake Passage, Bransfield Strait, Powell Basin, NW and SE Weddell Sea and the Polar Front north of Bouvet Island) is summarized and discussed. The deployment of time-series sediment traps provided annual flux records between 1983 and 1990. The biosiliceous particle flux is characterized by significant seasonal and interannual variations. Flux pulses, accounting for 70–95% of the total annual flux, occur during austral summer, with a duration ranging between about 2 and 9 weeks. The annual values of vertical diatom and radiolarian flux range between 0.26 × 109 and more than 26 × 109 valves m−2 and between 0.21 × 104 and 70 × 104 shells m−2, respectively. Interannual differences in the particle flux range over a factor of 10. Grazers play an important role in controlling the quantity, timing and pattern of the vertical biosiliceous particle flux.The flux pattern of diatoms and radiolarians is similar at most of the sites investigated and shows a close relationship between the production of siliceous phytoplankton and proto-zooplankton. At some sites, however, the radiolarian flux pattern indicates probably phytoplankton production which is not documented by direct signals in the trap record.During their transfer through the water column to the ocean floor, the composition of the biosiliceous particles is altered mechanically (breakdown by grazing Zooplankton) and by dissolution, which significantly affects especially diatoms and phaeodarians in the upper portion of the water column and at the sediment-water interface.Significant lateral transport of suspended biosiliceous particles was observed in the bottom water layer in regions adjacent to shelf areas (Bransfield Strait), and in the vicinity of topographic elevations (Maud Rise), indicating considerable redistribution of biogenic silica in these regions.  相似文献   

14.
A study of radiolarian fluxes collected during 1991–93 from time-series sediment traps deployed at 1071 and 3010 m water depth in the southern Bay of Bengal (SBBT) yielded 40 species/groups of radiolarians. Among the order Polycystina, the species of sub-order Spumellaria were by far the most abundant (∼95%) followed by sub-order Nassellaria (5%). This is contrary to reports from the Atlantic and Pacific Oceans and is attributed to the prevailing hyposaline condition resulting from the monsoonal rainfall. Higher radiolarian fluxes occurred during March–May, when moderate salinity and a high sea surface temperature (SST) regime prevailed at the trap site. R-mode cluster analysis of the radiolarian flux data revealed three assemblages represented by the cooler (A) and warmer (C) surface dwelling fauna (0–50 m) dominated by spumellarians, and a deeper dwelling (B) sub-surface fauna (50–100 m) associated with deep dwelling (>100 m) nassellarian species. Spongaster tetras tetras, a surface water radiolarian species, exhibited its preference for high SST and moderate salinity conditions during the pre-monsoon season (March–May). Radiolarian fluxes responded to seasonal changes in SST and salinity variations due to the monsoonal precipitation, and the freshwater runoff from the Indian rivers causing a hyposaline condition in the Bay of Bengal. Results imply that the radiolarian assemblages in the down core data may reveal the monsoonal history in the geological past.  相似文献   

15.
Modern foraminiferal assemblage zones can be used to reconstruct palaeo sea levels when applied to fossil foraminifera down a sediment core. Previous intertidal foraminiferal studies have predominantly focused on assemblages in surface sediments (0–1 cm), with the rationale that surface assemblages reflect the modern-day environment. Foraminifera live infaunally and therefore there is a need to document the infaunal vertical distribution of living foraminifera to fully capture the modern environment. Infaunal foraminiferal populations may compositionally differ from or be similar to those in the uppermost 1 cm of a core sample, but abundance is variable vertically, making it very complex to reconstruct and interpret past sea levels. This can have implications for the choice of assemblages to use as modern analogues for past sea-level reconstructions. This study documents the vertical infaunal distribution of living foraminifera, to allow for more informed interpretations of palaeo-reconstructions in mangrove environments. The down-core vertical distribution and abundance of living foraminifera, along with grain size and organic content, were documented using sediment cores along an elevational transect. Nine taxa were recorded as living at the time of collection, six of which were restricted to the top 4 cm. The majority of these were calcareous and found in the cores situated closer to the intertidal channel. Therefore, we argue that the diversity of living calcareous and agglutinated foraminifera could be restricted by grain size, with coarser grain sizes associated with lower species diversity. The findings suggest that foraminiferal species inhabiting the top 4 cm represent deeper living foraminiferal populations. Therefore, the top 4-cm interval can be used to establish a modern training set upon which reconstructions can be based. The findings from this study will provide guidance on the use of South African mangrove environments for future sea-level reconstructions.  相似文献   

16.
Downward particle flux was measured using sediment traps at various depths over the Porcupine Abyssal Plain (water depth 4850 m) for prolonged periods from 1989 to 1999. A strong seasonal pattern of flux was evident reaching a maximum in mid-summer. The composition of the material changed with depth, reflecting the processes of remineralisation and dissolution as the material sank through the water column. However, there was surprisingly little seasonal variation in its composition to reflect changes in the biology of the euphotic zone.Currents at the site have a strong tidal component with speeds almost always less than 15 cm/sec. In the deeper part of the water column they tend to be northerly in direction, when averaged over periods of several months.A model of upper ocean biogeochemistry forced by meteorology was run for the decade in order to provide an estimate of flux at 3000 m depth. Agreement with measured organic carbon flux is good, both in terms of the timings of the annual peaks and in the integrated annual flux. Interannual variations in the integrated flux are of similar magnitude for both the model output and sediment trap measurements, but there is no significant relationship between these two sets of estimates. No long-term trend in flux is evident, either from the model, or from the measurements.During two spring/summer periods, the marine snow concentration in the water column was assessed by time-lapse photography and showed a strong peak at the start of the downward pulse of material at 3000 m. This emphasises the importance of large particles during periods of maximum flux and at the start of flux peaks. Time lapse photographs of the seabed show a seasonal cycle of coverage of phytodetrital material, in agreement with the model output both in terms of timing and magnitude of coverage prior to 1996. However, after a change in the structure of the benthic community in 1996 no phytodetritus was evident on the seabed.The model output shows only a single peak in flux each year, whereas the measured data usually indicated a double peak. It is concluded that the observed double peak may be a reflection of lowered sediment trap efficiency when flux is very high and is dominated by large marine snow particles.Resuspension into the trap 100 m above the seabed, when compared to the primary flux at 3000 m depth (1800 mab) was lower during periods of high primary flux probably because of a reduction in the height of resuspension when the material is fresh. At 2 mab, the picture is more complex with resuspension being enhanced during the periods of higher flux in 1997, which is consistent with this hypothesis. However there was rather little relationship to flux at 3000 m in 1998.At 3000 m depth, the Flux Stability Index (FSI), which provides a measure of the constancy of the seasonal cycle of flux, exhibited an inverse relationship with flux, such that the highest flux of organic carbon was recorded during the year with the greatest seasonal variation.  相似文献   

17.
An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface–water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface–water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment–water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface–water productivity at times of reduced intermediate–water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface–water circulation in the North Pacific.  相似文献   

18.
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm the modern shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to the bottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corresponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, dominated by Cassidulina carinata , Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower continental slope- trough b  相似文献   

19.
《Oceanologica Acta》1998,21(4):521-532
A sediment trap experiment was carried out in the West Caroline Basin, located in the equatorial western Pacific between influences of the Asian monsoon and the open ocean. Annual mass flux at the shallow trap at Site 1 was 57.10 g m-2 yr-1. Generally, the higher flux of organic matter was associated with higher activities of biogenic opal-producing and carbonate-producing plankton communities. In addition, as the organic matter content increases, the organic carbon/carbonate carbon ratio shows a tendency to increase. Carbonate-producing plankton was predominant during periods 1 and 3 (May to July and November to the beginning of December), which could be due to limited silica supply to the euphotic zone. On the other hand, surface sea water was more nutrient-rich during periods 2 and 4 (August to October and the end of December to April) at Site 1. These high total mass fluxes could be stimulated by wind.The amount of biogenic components collected in the sediment traps and the accumulation in surface sediments at Site 1 could be compared with primary productivity values. Carbonate and biogenic opal fluxes were 99% and 90% less, respectively, in the surface sediments compared to those in the shallow sediment trap. This could be due to the reaction of sinking particles with undersaturated deep sea water just above the sea floor, rather than with the water column during sinking. About 20% of the organic matter was decomposed between the shallow and deep sediment traps and more than 98% between the deep sediment trap and final burial in the surface sediments. The relative amount of organic carbon preserved in surface sediments was about 0.10% of annual primary productivity.  相似文献   

20.
Marine isotope stage (MIS) 9 is one of the least investigated Pleistocene interglaciations. The present study describes reconstructions of deep-water conditions during this time interval based on benthic foraminiferal assemblages from sediment core M23414 (Rockall Plateau, North Atlantic). The results of faunal analysis were supported by planktic δ18O, sea surface temperature reconstructions based on planktic foraminiferal assemblages and content of ice rafted debris. Statistical data processing using principal component analysis revealed five climate-related benthic foraminiferal associations that changed in response to alterations of deep-water circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号