首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The intermediate water masses in the eastern Atlantic Ocean between 31°N and 53°N were studied by analysis of the distributions of potential temperature, salinity, dissolved nutrients and oxygen. Sub-surface salinity minima are encountered everywhere in the area. At the northern and southern boundary they are connected with the presence of Sub-Arctic Intermediate Water and Antarctic Intermediate Water, respectively, but towards the European ocean margin the sub-surface salinity minima shift to shallower density levels. The sub-surface salinity minima observed west of the Iberian Peninsula represent a water mass formed by winter convection in the Porcupine Sea Bight and the northern Bay of Biscay. These minima gain salt by diapycnal mixing with the underlying Mediterranean Sea Outflow water and with the overlying permanent thermocline. The core of Antarctic Intermediate Water appears to contribute to the formation of Mediterranean Sea Outflow Water since it becomes entrained into the overflow near Gibraltar. This entrainment gives rise to an enhanced concentration of the nutrients in the Mediterranean water in the North Atlantic. The deep salinity minimum, due to the presence of Labrador Sea Water, is restricted mainly to the Porcupine Abyssal Plain. In the Bay of Biscay this water type is strongly modified by enhanced diapycnal mixing near the continental slope. At all intermediate levels the continental slope in the Bay of Biscay seems to be a focal point for water mass modification by diapycnal mixing. Below the core of the Mediterranean Sea Outflow Water the Labrador Sea Water is also strongly modified. Its salinity is strongly enhanced by diapycnal mixing with the overlying core of Mediterranean Sea Outflow Water. An analysis of the oxygen and nutrient data indicates that the large spatial concentration differences at the level of the Labrador Sea Water are caused mainly by ageing of the water. The youngest water is observed at 52°N, and, especially in the Bay of Biscay and off south-west Portugal, the water at levels of about 1700 dbar are strongly enriched in nutrients and depleted in oxygen.  相似文献   

2.
The representation of baroclinic instability in numerical models depends strongly upon the model physics and significant differences may be found depending on the vertical discretization of the governing dynamical equations. This dependency is explored in the context of the restratification of an idealized convective basin with no external forcing. A comparison is made between an isopycnic model including a mixed layer (the Miami Isopycnic Coordinate Ocean Model, MICOM), its adiabatic version (MICOM-ADIAB) in which the mixed layer physics are removed and the convective layer is described by a deep adiabatic layer outcropping at the surface instead of a thick dense mixed layer, and a z-coordinate model (OPA model).In the absence of a buoyancy source at the surface, the mixed layer geometry in MICOM prevents almost any retreat of this layer. As a result, lateral heat exchanges in the upper layers are limited while mass transfers across the outer boundary of the deep convective mixed layer result in an unrealistic outward spreading of this layer. Such a widespread deep mixed layer maintains a low level of baroclinic instability, and therefore limits lateral heat exchanges in the upper layers over most of the model domain. The behavior of the adiabatic isopycnic model and z-coordinate model is by far more satisfactory although contrasted features can be observed between the two simulations. In MICOM-ADIAB, the more baroclinic dynamics introduce a stronger contrast between the surface and the dense waters in the eddy kinetic energy and heat flux distributions. Better preservation of the density contrasts around the dense water patch maintains more persistent baroclinic instability, essentially associated with the process of dense water spreading. The OPA simulation shows a faster growth of the eddy kinetic energy in the early stages of the restratification which is attributed to more efficient baroclinic instability and leads to the most rapid buoyancy restoring in the convective area among the three simulations. Dense water spreading and warm surface capping occur on fairly similar time scales in MICOM-ADIAB although the former is more persistent that the latter. In this model, heat is mainly transported by anticyclonic eddies in the dense layer while both cyclonic and anticyclonic eddies are involved in the upper layers. In OPA, heat is mainly brought into the convective zone through the export of cold water trapped in cyclonic eddies with a strong barotropic structure. Probably the most interesting difference between the z-coordinate and the adiabatic isopycnic model is found in the temperature distribution ultimately produced by the restratification process. OPA generates a spurious volume of intermediate water which is not seen in MICOM-ADIAB where the volume of the dense water is preserved.  相似文献   

3.
Using an idealized ocean general circulation model, we examine the effect of “mixing hotspots” (localized regions of intense diapycnal mixing) predicted based on internal wave-wave interaction theory (Hibiya et al., 2006) on the meridional overturning circulation of the Pacific Ocean. Although the assumed diapycnal diffusivity in the mixing hotspots is a little larger than the predicted value, the upwelling in the mixing hotspots is not sufficient to balance the deep-water production; out of 17 Sv of the downwelled water along the southern boundary, only 9.2 Sv is found to upwell in the mixing hotspots. The imbalance as much as 7.8 Sv is compensated by entrainment into the surface mixed layer in the vicinity of the downwelling region. As a result, the northward transport of the deep water crossing the equator is limited to 5.5 Sv, much less than estimated from previous current meter moorings and hydrographic surveys. One plausible explanation for this is that the magnitude of the meridional overturning circulation of the Pacific Ocean has been overestimated by these observations. We raise doubts about the validity of the previous ocean general circulation models where diapycnal diffusivity is assigned ad hoc to attain the current magnitude suggested from current meter moorings and hydrographic surveys.  相似文献   

4.
Abstract. A number of recent studies based on hydrographic observations and modelling simulations have dealt with the major climatic shift that occurred in the deep circulation of the Eastern Mediterranean. This work presents hydrographic observations and current measurements conducted from 1997 to 1999, which reveal strong modifications in the dynamics of the upper, intermediate and deep layers, as well as an evolution of the thermohaline characteristics of the deep Aegean outflow since 1995. The reversal of the circulation in the upper layer of the north/central Ionian is worthy of note. The observations indicate a reduction of Atlantic Water in the northern Ionian with an increase on the eastern side of the basin. In the intermediate layer, the dispersal path of the Levantine Intermediate Water (LIW) is altered. Highly saline (>39.0) and well-oxygenated intermediate waters were found near the Western Cretan Arc Straits. They flow out from the Aegean, thus interrupting the traditional path of the LIW, and spread prevalently northwards into the Adriatic Sea. In the deep layer, dense waters, exiting from the Adriatic (σø−29.18 kg · m−3), flow against the western continental margin in the Ionian Sea at a depth of between 1000–1500 m. Dense waters of Aegean origin (> 29.20 kg · m−3), discharged into the central region of the Eastern Mediterranean during the early stages of the transient, propagate prevalently to the east in the Levantine basin and to the west in the northern Ionian Sea. Near-bottom current measurements conducted in the Ionian Sea reveal unforeseen aspects of deep dynamics, suggesting a new configuration of the internal thermohaline conveyor belt of the Eastern Mediterranean.  相似文献   

5.
Gravity current entrainment is essential in determining the properties of the interior ocean water masses that result from marginal sea overflows. Although the individual entraining billows will be unresolvable in large-scale ocean models for the foreseeable future, some large-scale simulations are now being carried out that do resolve the intermediate scale environment which may control the rate of entrainment. Hallberg [Mon. Wea. Rev. 128 (2000) 1402] has recently developed an implicit diapycnal mixing scheme for isopycnic coordinate ocean models that includes the Richardson number dependent entrainment parameterization of Turner [J. Fluid Mech. 173 (1986) 431], and which may be capable of representing the gravity current evolution in large-scale ocean models. The present work uses realistic regional simulations with the Miami Isopycnic Coordinate Ocean Model (MICOM) to evaluate ability of this scheme to simulate the entrainment that is observed to occur in the bottom boundary currents downstream of the Mediterranean outflow. These simulations are strikingly similar to the observations, indicating that this scheme does produce realistic mixing between the Mediterranean outflow and the North Atlantic Central Water. Sensitivity studies identify the critical Richardson number below which vigorous entrainment occurs as a particularly important parameter. Some of these experiments also show meddies detaching from the Mediterranean undercurrent at locations that appear to be highly influenced by topographic features.  相似文献   

6.
Chlorofluorocarbons (CFC-11 and CFC-12) in the intermediate water having between 26.4 and 27.2 were determined at 75 stations in the western North Pacific north of 20°N and west of 175.5°E in 1993. The intermediate water of 26.4–26.6 was almost saturated with respect to the present atmospheric CFC-11 in the zone between 35 and 45°N around the subarctic front. Furthermore, the ratios of CFC-11/CFC-12 of the water were also of those formed after 1975. These suggest that the upper intermediate water (26.4–26.6) was recently formed by cooling and sinking of the surface water not by mixing with old waters. The water below the isopycnal surface of 26.8 contained less CFCs and the area containing higher CFCs around the subarctic front was greatly reduced. However, the CFC age of the lower intermediate water (26.8–27.2) in the zone around the subarctic front was not old, suggesting that the water was formed by diapycnal mixing of the water ventilated with the atmosphere with old waters not containing appreciable CFCs, probably the Pacific Deep Water. The southward spreading rate decreased with depth and it was one sixth of its eastward spreading rate of the North Pacific Intermediate Water (NPIW).  相似文献   

7.
《Ocean Modelling》2004,6(1):83-100
A series of vertical mixing schemes implemented in a circumpolar coupled ice–ocean model of the BRIOS family is validated against observations of hydrography and sea ice coverage in the Weddell Sea. Assessed parameterizations include the Richardson number-dependent Pacanowski–Philander scheme, the Mellor–Yamada turbulent closure scheme, the K-profile parameterization, a bulk mixed layer model and the ocean penetrative plume scheme (OPPS). Combinations of the Pacanowski–Philander parameterization or the OPPS with a simple diagnostic model depending on the Monin–Obukhov length yield particularly good results. In contrast, experiments using a constant diffusivity and the traditional convective adjustment cannot reproduce the observations. An underestimation of wind-driven mixing in summer leads to an accumulation of salt in the winter water layer, inducing deep convection in the central Weddell Sea and a homogenization of the water column. Large upward heat fluxes in these simulations lead to the formation of unrealistic, large polynyas in the central Weddell Sea after only a few years of integration. Furthermore, spurious open-ocean convection affects the basin-scale circulation and leads to a significant overestimation of meridional overturning rates. We conclude that an adequate parameterization of both wind-induced mixing and buoyancy-driven convection is crucial for realistic simulations of processes in seasonally ice-covered seas.  相似文献   

8.
The near-inertial waves (NIWs) are important for energy cascade in the ocean. They are usually significantly reinforced by strong winds, such as typhoon. Due to relatively coarse resolutions in contemporary climate models, NIWs and associated ocean mixing need to be parameterized. In this study, a parameterization for NIWs proposed by Jochum in 2013 (J13 scheme), which has been widely used, is compared with the observations in the South China Sea, and the observations are treated as model outputs. Under normal conditions, the J13 scheme performs well. However, there are noticeable discrepancies between the J13 scheme and observations during typhoon. During Typhoon Kalmaegi in 2014, the inferred value of the boundary layer is deeper in the J13 scheme due to the weak near-inertial velocity shear in the vertical. After typhoon, the spreading of NIWs beneath the upper boundary layer is much faster than the theoretical prediction of inertial gravity waves, and this fast process is not rendered well by the J13 scheme. In addition, below the boundary layer, NIWs and associated diapycnal mixing last longer than the direct impacts of typhoon on the sea surface. Since the energy dissipation and diapycnal mixing below the boundary layer are bounded to the surface winds in the J13 scheme, the prolonged influences of typhoon via NIWs in the ocean interior are missing in this scheme. Based on current examination, modifications to the J13 scheme are proposed, and the modified version can reduce the discrepancies in the temporal and vertical structures of diapycnal mixing.  相似文献   

9.
10.
Sensitivity studies with a new generalized coordinate ocean model are performed in order to compare the behavior of bottom boundary layers (BBLs) when terrain-following (sigma or combined sigma and z-level) or z-level vertical grids are used, but most other numerical aspects remain unchanged. The model uses a second-order turbulence closure scheme that provides surface and BBL mixing and results in a quite realistic climatology and deep water masses after 100 year simulations with a coarse resolution (1° × 1°) basin-scale terrain-following grid. However, with the same turbulence scheme but using a z-level grid, the model was unable to produce dense water masses in the deep ocean. The latter is a known problem for coarse resolution z-level models, unless they include highly empirical BBL schemes.A set of dense water overflow experiments with high-resolution grids (10 and 2.5 km) are used to investigate the influence of model parameters such as horizontal diffusivity, vertical mixing, horizontal resolution, and vertical resolution on the simulation of bottom layers for the different coordinate systems. Increasing horizontal diffusivity causes a thinner BBL and a bottom plume that extends further downslope in a sigma grid, but causes a thicker BBL and limited downslope plume extension in a z-level grid. A major difference in the behavior of the BBL in the two grids is due to the larger vertical mixing generated by the turbulence scheme over the step-like topography in the z-level grid, compared to a smaller vertical mixing and a more stably stratified BBL in the sigma grid. Therefore, the dense plume is able to maintain its water mass better and penetrates farther downslope in the sigma grid than in the z-level grid. Increasing horizontal and vertical resolution in the z-level grid converges the results toward those obtained by a much coarser resolution sigma coordinate grid, but some differences remain due to the basic differences in the mixing process in the BBL.  相似文献   

11.
The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea(SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach ~10~(–4)m~2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography. In contrast, the influence of the wind-induced nearinertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.  相似文献   

12.
The mixing and spreading of the Storfjorden overflow were investigated with density and horizontal velocity profiles collected at closely spaced stations. The dense bottom water generated by strong winter cooling, enhanced ice formation and the consequent brine rejection drains into and fills the depression of the fjord and upon reaching a 120-m deep sill, descends like a gravity current following the bathymetry towards the shelf edge. The observations covered an approximate 37-km path of the plume starting from about 68 km downstream of the sill. The plume is identified as two layers: a dense layer 1 with relatively uniform vertical structure underlying a thicker layer 2 with larger vertical density gradients. Layer 1, probably remnants from earlier overflows, almost maintains its temperature–salinity characteristics and spreads to a width of about 6 km over its path, comparable to spread resulting from Ekman veering. Layer 2, on the other hand, is a mixing layer and widens to about 16 km. The overflow, in its core, is observed to have salinities greater than 34.9, temperatures close to the freezing point, and light transmissivity typically 5% less than that of the ambient waters. The overall properties of the observed part of the plume suggest dynamical stability with weak entrainment. However local mixing is observed through profiles of the gradient Richardson number, the non-dimensional ratio of density gradient over velocity gradient, which show portions with supercritical values in the vicinity of the plume–ambient water interface. The net volume transport associated with the overflow is estimated to be 0.06 Sv (Sv≡106 m3 s−1) out of a section closest to the sill and almost double that as it leaves the section furthest downstream. The weak entrainment is estimated to account for the doubling of the volume transport between the two sections. A simple model proposed by Killworth (J. Geophys. Res. 106 (2001) 22267), giving the path of the overflow from a constant rate of vertical descent along the slope, compares well with our observations.  相似文献   

13.
14.
Data from field observations and numerical model simulations are used to understand and quantify the pathways by which passive tracers penetrate into the Black Sea intermediate and deep layers. Chlorofluorocarbon (CFC) concentrations measured during the1988 R.V. Knorr cruise show strong decrease with increasing density in the Black Sea and illustrate the very slow rate of ventilation of deep water in this basin. We develop a 3D numerical model based on the Modular Ocean Model (MOM), and calibrate it in a way to produce consistent simulations of observed temperature, salinity and CFCs. One important feature is the implementation of a special parameterization for convection, which is an alternative of the convective adjustment in MOM and handles the penetration of the Bosporus plume into the halocline. The model forcing includes interannually variable wind, heat and water fluxes constructed from Comprehensive Ocean–Atmosphere Data Set and ECMWF atmospheric analysis data and river runoff data. The analysis of observations and simulated data are focused on correlations between thermohaline and tracer fields, dynamic control of ventilation, and the relative contributions of sources at the sea surface and outflow from the Bosporus Strait in the formation of intermediate and deep waters. A simple theory is developed which incorporates the outflow from the strait along with the vertical circulation (vertical turbulent mixing and Ekman upwelling) and reveals their mutual adjustment. The analyses of simulated and observed CFCs demonstrate that most of the CFC penetrating the deep layers has its source at the sea surface within the Black Sea rather than from the Marmara Sea via the Bosporus undercurrent. Under present-day conditions, the surface CFC signals have reached only the upper halocline. Intrusions below 600 m are not simulated. The major pathways of penetration of CFCs are associated with cold-water mass formation sites, Bosporus effluent, as well as with the diapycnal mixing in the area of Rim Current. Future CFC sampling strategies coherent with the unique conditions in the Black Sea are discussed.  相似文献   

15.
In the northwestern Mediterranean Sea, Coastal Zone Color Scanner images suggest that the eddies that participate in the restratification following deep convection interact with the spring phytoplankton bloom. The mechanisms for this interaction are studied using a biogeochemical model embedded in an eddy-resolving primitive equation ocean model. The model is initialized with a patch of dense water surrounded by a stratified ocean, which is characteristic of the winter situation. The atmospheric forcing is artificially held constant, in order to focus solely on the mesoscale variability. After a few days, meanders develop at the periphery of the patch, inducing its sinking and spreading. Mesoscale upward motions are responsible for the shoaling of the mixing layer in the trough of the meanders. As sunlight is the main factor regulating primary production at this time of year, this shoaling increases the mean exposure time of the phytoplankton cells and thus enhances productivity. Consequently, the majority of phytoplankton production is obtained at the edge of the patch, in agreement with in situ data. Through advection, phytoplankton is then subducted from these sources towards the crest of the meanders. Our results suggest that this mesoscale transport is responsible for a decorrelation between phytoplankton biomass and primary production.  相似文献   

16.
Ventilation of the deep basins of the North Aegean Sea takes place during relatively scarce events of massive dense water formation in that region. In the time intervals between such events, the bottom waters of each sub-basin are excluded from interaction with other water masses through advection or isopycnal mixing and the only process that changes their properties is diapycnal mixing with overlying waters. In this work we utilize a simple one-dimensional model in order to estimate the vertical eddy diffusion coefficient Kρ based on the observed rate of change of density and stratification. Vertical diffusivity is estimated for each of three sub-basins of the North Aegean, one of convex shape of the seabed and the other two of concave topography. It is noteworthy that the convex sub-basin exhibited much higher vertical diffusivity than the two concave sub-basins, a fact consistent with theoretical predictions that internal-wave-induced mixing is higher over the former shape of seabed. Furthermore, the estimates of Kρ are exploited in computing the vertical transport of dissolved oxygen through diffusion and the rate of oxygen consumption by decaying organic matter. The different levels of the estimated diffusion and oxygen consumption rates testify to the dynamical and biogeochemical characteristics of each basin.  相似文献   

17.
《Ocean Modelling》2011,40(3-4):262-274
The impact of topographically catalysed diapycnal mixing on ocean and atmospheric circulation as well as marine biogeochemistry is studied using an earth system model of intermediate complexity. The results of a model run in which diapycnal mixing depends on seafloor roughness are compared to a control run that uses a simple depth-dependent parametrization for vertical background diffusivity. A third model run is conducted that uses the horizontal mean of the topographically catalysed mixing as vertical profile in order to distinguish between the overall effect of larger diffusivities and the spatial heterogeneity of the novel mixing parametrization.The new mixing scheme results in a strengthening of the deep overturning cell and enhances equatorial upwelling. Surface temperatures in the Southern Ocean increase by about 1 K (in the overall effect) whereas cooling of a similar magnitude in low latitudes is generated by the spatial heterogeneity of the mixing. The corresponding changes in the atmospheric circulation involve a weakening of the southern hemispheric Westerlies and a strengthening of the Walker circulation. Biogeochemical changes are dominated by an improved ventilation of the deep ocean from the south. Water mass ages decline significantly in the deep Indian Ocean and the deep North Pacific whereas oxygen increases in the two ocean basins. The representation of the global volume of water with an oxygen concentration lower than 90 μmol/kg in the model is improved using the topography catalysed mixing. Furthermore, primary production is stimulated in equatorial regions through increased upwelling of nutrients and reduced in the oligotrophic gyres.  相似文献   

18.
The Finite Element Ocean circulation Model (FEOM) is applied to study the sensitivity of density driven overflows to the vertical discretization and bottom topography representation using the dynamics of overflow mixing and entrainment (DOME) setup. FEOM allows for hybrid grids combining σ, z + σ, full cell, partly shaved cell and fully shaved cell grids within the same numerical kernel thus isolating as far as possible effects of mesh geometry from those of model numerics. The sensitivity of diapycnal mixing, entrainment, plume thickness and plume meridional distribution to vertical discretization and partly to the subgrid process parameterization is explored. It is shown that simulations on pure σ grids or the combination of z + σ resolve the overflow processes best in terms of downslope plume propagation, plume thickness and dilution, and also have the least resolution dependence. Grids using z-levels generate excessive spurious mixing when resolution is insufficient. Applying partial cells improves the plume representation, but still requires higher horizontal and vertical resolution to converge to the σ grid results. It is demonstrated that increasing lateral viscosity causes the plume thickness to reduce whereas increasing lateral diffusivity has opposite effect. When keeping the Prandtl number constant, the increase in diffusivity and viscosity leads to an increase in mixing and plume thickness on z-level grids and also on σ-grids when lateral dissipation is oriented along geopotential surfaces. Using the along σ- diffusion helped to obtain correct plume thickness and entrainment on σ grids. Increasing the vertical mixing coefficients leads to an increase in diapycnal mixing and in downslope penetration as well.  相似文献   

19.
海洋中的跨等密度面湍流混合对于热量和淡水输送、翻转环流以及全球气候变化都有重要影响,理解跨等密度面湍流混合的变化对于改进气候模式模拟和预测大尺度海洋环流的能力具有重要作用.基于细尺度参数化方法,本文利用黑潮延伸体区的一个长期潜标K7观测,对跨等密度面湍流混合的次季节变化进行了分析.结果 表明,在2004年6~9月,30...  相似文献   

20.
We present a detailed account of the changing hydrography and the large-scale circulation of the deep waters of the Eastern Mediterranean (EMed) that resulted from the unique, high-volume influx of dense waters from the Aegean Sea during the 1990s, and of the changes within the Aegean that initiated the event, the so-called ‘Eastern Mediterranean Transient’ (EMT). The analysis uses repeated hydrographic and transient tracer surveys of the EMed in 1987, 1991, 1995, 1999, and 2001/2002, hydrographic time series in the southern Aegean and southern Adriatic Seas, and further scattered data. Aegean outflow averaged nearly 3 × 106 m3 s−1 between mid-1992 and late 1994, and was largest during 1993, when south and west of Crete Aegean-influenced deep waters extended upwards to 400 m depth. EMT-related Aegean outflow prior to 1992, confined to the region around Crete and to 1800 m depth-wise, amounted to about 3% of the total outflow. Outflow after 1994 up to 2001/2002, derived from the increasing inventory of the tracer CFC-12, contributed 20% to the total, of 2.8 × 1014 m3. Densities in the southern Aegean Sea deep waters rose by 0.2 kg/m3 between 1987 and 1993, and decreased more slowly thereafter. The Aegean waters delivered via the principal exit pathway in Kasos Strait, east of Crete, propagated westward along the Cretan slope, such that in 1995 the highest densities were observed in the Hellenic Trench west of Crete. Aegean-influenced waters also crossed the East Mediterranean Ridge south of Crete and from there expanded eastward into the southeastern Levantine Sea. Transfer into the Ionian mostly followed the Hellenic Trench, largely up to the trench’s northern end at about 37°N. From there the waters spread further west while mixing with the resident waters. Additional transfer occurred through the Herodotus Trough in the south. Levantine waters after 1994 consistently showed temperature–salinity (T–S) inversions in roughly 1000–1700 m depth, with amplitudes decreasing in time. The T–S distributions in the Ionian Sea were more diverse, one cause being added Aegean outflow of relatively lower density through the Antikithira Strait west of Crete. Spreading of the Aegean-influenced waters was quite swift, such that by early 1995 the entire EMed was affected. and strong mixing is indicated by near-linear T–S relationships observed in various places. Referenced to 2000 and 3000 dbar, the highest Aegean-generated densities observed during the event equaled those generated by Adriatic Sea outflow in the northern Ionian Sea prior to the EMT. A precarious balance between the two dense-water source areas is thus indicated. A feedback is proposed which helped triggering the change from a dominating Adriatic source to the Aegean source, but at the same time supported the previous long-year dominance of the Adriatic. The EMed deep waters will remain transient for decades to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号