首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pillow lavas in Bompoka island of the Andaman–Nicobar islands, forming a part of Sunda–Burmese forearc, are composed of plagioclase and clinopyroxene microphenocrysts in a fine-grained ferruginous groundmass along with glass. They are also characterized by several quench plagioclase and clinopyroxene morphologies. Zr/TiO2 versus Nb/Y relationship of these pillow lavas show that these are tholeiitic basalts in composition. These basalts have low MgO (5.19–6.12 wt%), Ni (84–118 ppm), and Cr (144–175 ppm) abundance and high FeO(T)/MgO (1.71–1.92) ratios, reflecting their fractionated nature. In Th/Yb versus Nb/Yb and Ti/Yb versus Nb/Yb binary diagrams, they show N-MORB affinity. However, La/Nb–Y and Ce/Nb–Th/Nb relationships along with a slight LREE depleted (LaN/YbN = 0.75–0.82) pattern and high Ba/Zr (0.28–0.40) ratios and LILE (K, Rb, Ba, Sr and Th) enrichment relative to N-MORB, suggest their back-arc basin basalt affinity. It is inferred that these pillow basalts have been derived from a metasomatised N-MORB-like mantle source in a trench-distal (wider) back-arc basin, probably near the leading edge of the Eurasian continent during Early to Late Cretaceous times, prior to the currently active Andaman–Java subduction system.  相似文献   

2.
Sub-ophiolitic greenschist facies metamorphic rocks occur at the sole of ophiolite slices and as blocks in the mélange zone beneath the Andaman ophiolite. These are represented by metabasics as actinolite schist to actinolite–chlorite schist and metasediments as garnetiferous quartzo-feldspathic mica–chlorite schist and piemontite quartzite to piemontite bearing quartz–muscovite–chlorite schist to muscovite–quartz-chlorite schist. Actinolite occurs along the schistosity and also as porphyroblasts. Syn to post-tectonic garnet shows no compositional zoning and represent almandine–spessartine solid solution (Alm44–47, Sps23–27, Gros13–17, Pyr9–10). The metabasics are enriched in LILE and depleted in Zr and Y compared to N-MORB.The lithological features suggest that residual heat was the main heat source for greenschist-facies metamorphism. Top part of the subducting slab and overlying trench sediments were metamorphosed and dislocated by the close spaced thrusts in an accretionary prism setting. The field association indicates that metamorphism and the uplift of metamorphic rocks along with ophiolite slices were bracketed in between Cretaceous and Oligocene period. These processes were later than the Pre-Cretaceous emplacement of the ophiolites of Sumatra and Java.  相似文献   

3.
An extraordinarily strong and persistent earthquake swarm (Andaman swarm 2005) originated in the Andaman back-arc following the aftershock sequences of the 26 December 2004 Sumatra earthquake. The swarm (n = 651, mbmax= 5.9) came mainly in two phases: January 26–31 and Feb.–Aug. 2005, in an area of size 90 × 40 km2, at the centre of which lies a broad bathymetric depression and high gravity zone. The swarm demonstrates a complex faulting series, initially the strike-slip motion followed by normal faulting in repetitive sequences, whose representative fault planes orient at high angle to the regional faults. The swarm character as well as the distribution of stress-axes and their correlation to tectonic features lends speculation for formation of a nascent rift segment in NW-SE direction at the doorstep of the Sewell Seamount. The swarm has given rise to 21 episodes of rifting activities of variable time extent within 26–31 January 2005. The r-t plots corresponding to the swarm data, modelled with variable hydraulic diffusivity (D) values 4, 6, 8 and 10 m2/s, suggest for excess pressure front from ascending magmatic fluid. This eventually heralded the rifting; causing pore pressure perturbations that propagated in accordance with known diffusion parabolic equations.  相似文献   

4.
Chromites occurring in different modes have been characterized from ophiolites of Rutland Island, a part of Burma-Andaman-Java subduction complex in the Bay of Bengal. Chromite mainly occurs as massive chromitite pods in mantle ultramafic tectonite and as thin massive chromitite bands together with minor disseminations in crustal ultramafic cumulate. Other than pods chromite also appears as: (a) anhedral restitic grains, (b) strings occurring as exsolved phases and as (c) symplectitic intergrowth with orthopyroxene in mantle tectonite. The chromites occurring as massive chromitite pods and bands contain high Cr (Cr#—73 to 80). Restitic chromite grains in mantle ultramafics are high-Mg (Mg#—58), high-Al (Al2O3—34 wt.%) and intermediate-Cr (Cr#—37) chromites. The bivariant plots of TiO2 wt.% vs 100Cr#, Mg# vs Cr# and Cr-Al-Fe3+ ternary discrimination diagram show that the massive and disseminated chromites fall in the boninitic field. The (Al2O3)melt and (FeO/MgO)melt values for the massive chromitites are estimated as 10 wt.% to 11 wt.% and 0.67–1.78 respectively, corroborating a boninitic parentage. Massive chromitite on Fe2+/Fe3+ vs Al2O3 wt.% and TiO2 wt.% vs Al2O3 wt.% plots occupy mainly the field of supra-subduction zone peridotites. High-Mg olivine (Fo91?93), high-Mg orthopyroxene (En~90) and high-Cr chromites of Rutland ophiolite are all supportive of boninitic source at supra-subduction zone setting. 57Fe Mössbauer study of chromite of beach placer shows that chromites occur in partly inverse spinel structure with iron distribution as Fe3+(A)Fe2+(A)Fe2+(B) which might be a result of oxidation. The olivine-spinel geothermometry shows 650–700°C re-equilibration temperature which is much lower than near crystallization temperature (950–1,050°C) derived from orthopyroxene-clinopyroxene assemblage. At supra-subduction setting an oxidizing hydrous fluid derived from subducting slab might have a major influence during the formation of Rutland ophiolite in this part of Burma-Java subduction complex.  相似文献   

5.
Petrographic thin section analysis of the samples collected from the type section of Neil West Coast Formation, situated in the west coast of Neil Island yielded moderately preserved coralline red algae, benthic and planktic foraminifers, coral fragments, echinoid spines and gastropod shells. The coralline red algae are represented by both non-geniculate and geniculate forms. The non-geniculate forms belong to melobesids, lithophylloids and mastophoroides. The geniculate forms are represented by species of Amphiroa, Corallina, and Jania. However, the diversity and abundance of coralline algal forms are less in comparison to the benthic foraminifers those are represented by Amphistegina, Neorotalia, Ammonia, Elphidium, Operculina, Assilina, Amphisorus and texularids. Planktic foraminifers like Globigerinoides and other biogenic components viz., gastropod shells, echinoid spines and coral fragments are also common. A foraminiferal-algal grainstone facies has been recognized as observed in the field as well as in thin section analysis. The overall assemblage of the biogenic components and facies analysis indicate intertidal to near shore environment of deposition with high energy condition and increased hydrodynamic activity.  相似文献   

6.
Cyclonic storms are large-scale disturbances which cause extensive damage in coastal ecosystems. On 25 November 2013, Cyclone Lehar made a significant impact on the coastal areas of Andaman and Nicobar Islands. We observed the pre- and post-Lehar cyclonic effects on the seagrass meadows at Ross and Smith Island, North Andaman. The study indicates that the seagrass meadows are composed of Halodule uninervis, Halophila ovalis, Halodule pinnifolia and Thalassia hemperichii species. Seagrass beds of approximately 1.96 ha (approx. 63 %) were destroyed in the cyclone.  相似文献   

7.
The Sumatra–Andaman Tsunami left distinctive sedimentological and geomorphological signatures in the area of Khao Lak. Fine-grained sediments, predominantly layers of cohesive, carbonate-rich, fine-sandy silt with thicknesses of 1–10 cm, erosionally overlying pre-tsunami sandy soils and sediments, represent the most common tsunami deposits in the study area. Petrographically, they differ significantly from other coastal sediments and affiliated soils. Due to their grain size and corresponding clay mineral content, muddy shelf sediments (sub-wave base) are indicated as a main source. The present results suggest that indications of shelf influence, although varying regionally, might contribute to the identification of fine-grained tsunami sediments and their differentiation from storm sediments. However, the observed differences of tsunami sediments to soils and other coastal sediments, especially with respect to carbonate mineralogy, might disappear in short geological time under conditions of intensive weathering and bioturbation. At Cape Pakarang, hundreds of boulders with up to 24 tons were deposited on the foreshore and upper shoreface. Applying Nott’s (Earth Planet Sci Lett 210:269–276, 2003) formulas, minimum flow velocities of 3.9 m/s are required to transport the largest boulders. The devastating tsunami effect of both, onshore flow and backflow, is documented by damaged human constructions. Geomorphological effects include intensive widening of estuary mouths and the development of erosional channels. Now, estuary mouths are reduced, and erosional channels cut off from the sea due to the formation of a post-tsunami beach ridge.  相似文献   

8.
The nature of selected soil-chemical and microbial properties influenced by tsunami affected and non-affected areas along the border areas of the alluvial Andaman Island in India were investigated. Soils of these areas have turned saline and saline-sodic due to the ingression of sea water. The electrical conductivity of the saturation extract of the surface soil varied from 11.2 to 23.8 dS m?1 in 2005, and it was decreased to 0.8–10.3 dS m?1 in 2006 due to the heavy rain in the following year after the tsunami. Soil quality indicators, like microbial biomass C, microbial metabolic quotient, microbial respiration quotient and fluorescein diacetate hydrolyzing activity, decreased in the tsunami affected soil in 2005, but slightly increased in 2006. All microbial parameters were significantly negatively correlated with the electrical conductivity, sodium absorption ratio and exchangeable sodium percentage. Suppression of microbial biomass and their activities in the soils due to the increased-salinity is of great agronomic significance and needs suitable intervention for sustainable crop production. Significant differences were found in soil-chemical and microbial characteristics between tsunami affected and non-affected areas. Hierarchical clustering algorithm on the basis of different soil-chemical and microbial characteristics revealed that there is significant difference in grouping between tsunami affected and non-affected zones. From this study, it can be concluded that the sea water ingression detrimentally influenced the microbial properties of tsunami affected soil.  相似文献   

9.
Mishra  Minakshi  Abhishek  Yadav  R. B. S.  Sandhu  Manisha 《Natural Hazards》2021,105(1):313-338
Natural Hazards - The Andaman–Nicobar–Sumatra (ANS) region is a very hazardous area on the globe, which has witnessed a megathrust earthquake of Mw 9.2 on 26 December 2004 and several...  相似文献   

10.
18th June, 2010 5.9 Mw earthquake at North Andaman triggered along NW–SE pre-existing fault with reverse fault mechanism. Macroseismic survey and GPS geodesy reveal maximum damages following NE–SW trend due to normal fault mechanism. Coulomb stress modeling for post- and inter-seismic earthquakes after the 2004 mega-earthquake show different stages of fault segment linkage at North Andaman. The present earthquake has been explained as co-shock due to asiesmic soft linkage of fault propagation.  相似文献   

11.
The Andaman–Nicobar (A–N) Islands region has attracted many geo-scientists because of its unique location and complex geotectonic settings. The recent occurrence of tsunamis due to the megathrust tsunamigenic north Sumatra earthquake (Mw 9.3) with a series of aftershocks in the A–N region caused severe damage to the coastal regions of India and Indonesia. Several pieces of evidence suggest that the occurrence of earthquakes in the A–N region is related to its complex geodynamical processes. In this study, it has been inferred that deep-seated structural heterogeneities related to dehydration of the subducting Indian plate beneath the Island could have induced the process of brittle failure through crustal weakening to contribute immensely to the coastal hazard in the region. The present study based on 3-D P-wave tomography of the entire rupture zone of the A–N region using the aftershocks of the 2004 Sumatra–Andaman earthquake (Mw 9.3) clearly demonstrates the role of crustal heterogeneity in seismogenesis and in causing the strong shakings and tsunamis. The nature and extent of the imaged crustal heterogeneity beneath the A–N region may have facilitated the degree of damage and extent of coastal hazards in the region. The 3-D velocity heterogeneities reflect asperities that manifest what type of seismogenic layers exist beneath the region to dictate the size of earthquakes and thereby they help to assess the extent of earthquake vulnerability in the coastal regions. The inference of this study may be used as one of the potential inputs for assessment of seismic vulnerability to the region, which may be considered for evolving earthquake hazard mitigation model for the coastal areas of the Andaman–Nicobar Islands region.  相似文献   

12.
A systematic account of micro-textures and a few compositional profles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995,from Barren Island Volcano,NE India ocean,are presented for the frst time.The identifed micro-textures can be grouped into two categories:(i)Growth related textures in the form of coarse/fne-sieve morphology,fne-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fuctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt;and(ii)morphological texture,like glomerocryst,synneusis,swallow-tailed crystal,microlite and broken crystals,formed by the infuence of dynamic behavior of the crystallizing magma(convection,turbulence,degassing,etc.).Each micro-texture has developed in a specifc magmatic environment,accordingly,a frst order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit.Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth.Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective selfmixing environment.Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit.Intermittent degassing and eruption related decompression have also played a major role in the fnal stage of crystallization dynamics.  相似文献   

13.
Empirical Green??s function (EGF) technique is considered to be most effective technique for simulation of ground motions due to a finite earthquake source. In the present paper, this technique has been used to simulate ground motion due to a great earthquake. The coastal region of Sumatra Island has been visited by a great earthquake on December 26, 2004. This earthquake has been recorded at several broadband stations including a nearest broadband station PSI in Indonesia. The shear wave contributions in both horizontal components have been simulated at PSI station using EGF technique. The comparison of simulated and observed waveform has been made for various possibilities of rupture parameters in terms of root mean square error. The final rupture model supports rupture velocity of 3.0?km/s with nucleation point supporting northward propagating rupture that coincide with high-slip asperity defined by Sorensen et al. (Bull Seism Soc Am 97:S139?CS151, 2007). The final modeling parameters have been used to simulate record at MDRS station in coastal state of Tamilnadu, India. In an attempt to model a scenario of great earthquake in the Andaman Island, a hypothetical rupture plane is modeled in this region. The event occurred on August 10, 2008 of magnitude 6.2 (M w ) recorded on strong motion array at Port Blair has been used as EGF to simulate records due to the hypothetical great earthquake. Possibilities of earthquake due to the oblique strike-slip and thrust mechanism have been modeled in the present paper. Several possibilities of nucleation point for both cases has been considered, and it is seen that variation of peak ground acceleration at Port Blair station for strike-slip and thrust mechanism is 126?C738 gals and 647?C2,571 gals, respectively, which indicate high seismic hazard potential of Andaman Island.  相似文献   

14.
15.
In this paper, we report that the ratio of broadband energy (0.01?C2?Hz) to high-frequency energy (0.3?C2?Hz), E r, estimated from regional seismograms of India, might be a useful parameter in estimating tsunami potential of earthquakes in the Sumatra?CAndaman region. E r is expected to be sensitive to the depth as well as to the source characteristics of an earthquake. Since a shallow and slow earthquake has a greater tsunamigenic potential, E r may be a useful diagnostic parameter. We base our analysis on broadband seismograms of the great earthquakes of Sumatra?CAndaman (2004, M w?~?9.2) and Nias (2005, M w 8.6), 41 of their aftershocks, and the earthquakes of north Sumatra (2010, M w 7.8) and Nicobar (2010, M w 7.4) recorded at VISK, a station located on the east coast of India. In the analysis, we also included the two recent, great strike-slip earthquakes of north Sumatra (2012, M w 8.6, 8.2) recorded at VISK and three south Sumatra earthquakes (2007, M w 8.5; 2007, M w 7.9; 2010, M w 7.8) recorded at PALK, a station in Sri Lanka. We find that E r is a function of depth; shallower earthquakes have higher E r values than the deeper ones. Thus, E r may be indicative of tsunamigenic potential of an earthquake. As M w and E r increase so does the tsunami potential. In addition to the parameter E r, the radiated seismic energy, E s, may be estimated from the regional seismograms in India using empirical Green??s function technique. The technique yields reliable E s for the great Sumatra and Nias earthquakes. E r and E s computed from VISK data, along with M w and focal mechanism, may be useful in estimating tsunami potential along the east coast of India from earthquakes in the Sumatra?CAndaman region in less than ~20?min.  相似文献   

16.
17.
Padhy  Simanchal  Mishra  O. P.  Subhadra  N.  Dimri  V. P.  Singh  O. P.  Chakrabortty  G. K. 《Natural Hazards》2013,77(1):75-96

This study discusses the scaling properties of the spatial distribution of the December 26, 2004, Sumatra aftershocks. We estimate the spatial correlation dimension D 2 of the epicentral distribution of aftershocks recorded by a local network operated by Geological Survey of India. We estimate the value of D 2 for five blocks in the source area by using generalized correlation integral approach. We assess its bias due to finite data points, scaling range, effects of location errors, and boundary effects theoretically and apply it to real data sets. The correlation dimension was computed both for real as well as synthetic data sets that include randomly generated point sets obtained using uniform distributions and mimicking the number of events and outlines of the effective areas filled with epicenters. On comparing the results from the real data and random point sets from simulations, we found the lower limit of bias in D 2 estimates from limited data sets to be 0.26. Thus, the spatial variation in correlation dimensions among different blocks using local data sets cannot be directly compared unless the influence of bias in the real aftershock data set is taken into account. They cannot also be used to infer the geometry of the faults. We also discuss the results in order to add constraints on the use of synthetic data and of different approaches for uncertainty analysis on spatial variation of D 2. A difference in D 2 values, rather than their absolute values, among small blocks is of interest to local data sets, which are correlated with their seismic b values. Taking into account the possible errors and biases, the average D 2 values vary from 1.05 to 1.57 in the Andaman–Nicobar region. The relative change in D 2 values can be interpreted in terms of clustering and diffuse seismic activity associated with the low and high D 2 values, respectively. Overall, a relatively high D 2 and low b value is consistent with high-magnitude, diffuse activity in space in the source region of the 2004 Sumatra earthquake.

  相似文献   

18.
The annual b-value fluctuation patterns in Burmese subduction zone and Andaman–Sumatra subduction zone are evaluated from earthquake data (January 1990 to June 2016; Mw ³ 4.3) to identify seismic cycles with sequential dynamic phases as described in the ‘elastic failure model’ of Main et al. (1989). Two seismic cycles have been identified in Andaman–Sumatra subduction zone, one started in 1990 and ended on 2004 with occurrence of great Sumatra earthquake (Mw 9.0) and the other started in 2005 and continuing till date with the phase of crack coalescence and fluid diffusion (3A&B). Similarly, the subduction zone of Burma shows evidence of one incomplete seismic cycle within 1990–2016 and presently undergoing the crack coalescence and fluid diffusion (3A&B) phase. The analysis has prompted to subdivide the area into thirteen smaller seismic blocks (A to M) to analyse area specific seismic trend and vulnerability analysis employing Hurst Statistics. Hurst plots with the dynamic phases of ‘elastic failure model’ of earthquake generation is compared to assess the blocks with high seismic vulnerability. The analysis suggest that north Andaman zone (block G) and north Burma fold belt (block M) are seismically most vulnerable. Moreover, the seismic vulnerability of Tripura fold belt and Bangladesh plain (block K) is equally high.  相似文献   

19.
The rupture process of the disastrous Sumatra–Andaman earthquake of 26 December 2004 was analyzed by array processes for teleseismic P-waves recorded by a dense broadband seismic array in Taiwan with epicentral distances of close to 31°. The azimuthal variation from the BATS array center to both ends of the rupture fault is approximately 21°, which is larger than that reported previously for seismic arrays used to image the rupture process of this earthquake, thereby providing a high spatial resolution in studying the source rupture behavior. Two array-processing methods were used to analyze teleseismic P-wave trains. Both analyses were based on data recorded by a broadband network, covering a region of 200 × 400 km, with the aim of evaluating the rupture behavior of the earthquake. Consistent results from both analyses indicate that the earthquake had a rupture duration exceeding 500 s, with major asperities encountered at 80, 260, and 330 s after the initiation of rupturing. We traced the ruptured fault for more than 1200 km from the point of initial rupture. The average rupture velocity was approximately 3.0 km/s and the major northward rupture propagation began at 80 s after the initiation of rupturing.  相似文献   

20.
人发中铜,锌,铁,锰,钙,镁,钾,钠的测定   总被引:3,自引:1,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号