首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the break-up phase of two strong auroral events, emissions of short duration on the wavelength of He I, 5876 Å have been observed. These records are accurate within 0.5 Å and intensities of up to 120 R have been measured. This high value is not consistent with the theoretical limit suggested by other authors. Simultaneous observations of H, 6563 Å show that the He I and H emissions are not closely related to each other with time, which may be one reason for explaining the discrepancy with the predicted intensity derived from observed ratios of He++/H+ in the solar wind. The emission on 5876 Å has only been detected at the lowest border of very intense ray bundles towards north but not yet in auroral arcs and diffuse glow. It is suggested that two principally different helium events in aurora may be observable, one resulting in a low level He emission lasting for longer time and another in a stronger He emission of short duration. The observational difficulties caused by the presence of OH bands are discussed.  相似文献   

2.
3.
A self-consistent, time-dependent numerical model of the aurora and high-latitude ionos-phere has been developed. It is used to study the response of ionospheric and atmospheric properties in regions subjected to electron bombardment. The time history of precipitation events is arbitrarily specified and computations are made for a variety of electron spectral energy distributions and flux magnitudes. These include soft electron precipitation, such as might occur on the poleward edge of the auroral oval and within the magnetospheric cleft, and harder spectra representative of particle precipitation commonly observed within and on the equatorward edge of the auroral oval. Both daytime and night-time aurorae are considered. The results of the calculations show that the response of various ionospheric and atmospheric parameters depends upon the spectral energy distribution and flux magnitudes of the precipitating electrons during the auroral event. Various properties respond with different time constants that are influenced by coupling processes described by the interactive model. The soft spectrum aurora affects mainly the ionospheric F region, where it causes increases in the electron density, electron temperature and the 6300 Å red line intensity from normal quiet background levels during both daytime and night-time aurora. The fractional variation is greater for the night-time aurora. The hard spectrum aurorae, in general, do not greatly affect the F-2 region of the ionosphere; however, in the F-1 and E regions, large increases from background conditions are shown to occur in the electron and ion temperatures, electron and ion densities, airglow emission rates and minor neutral constituent densities during the build-up phase of the auroral event. During the decay phase of the aurora, most of these properties decrease at nearly the same rate as the specified particle precipitation flux. However, some ionospheric and atmospheric species have a long memory of the auroral event. The odd nitrogen species N(4S) and NO probably do not ever reach steady-state densities between auroral storms.  相似文献   

4.
An investigation has been made of the relation between auroral emission at λ5577 Å and the cosmic noise absorption using a new technique. A photometer and the antenna of a riometer were mounted on a 60 m long rotating antenna boom which had a speed of 1 rev per 3 min. The instruments were directed at an elevation angle of 45°. From the analysis of several break-ups of the aurora it has been found that during a period of 15–20 min in the middle of a break-up there may be an increase of the absorption by a factor 2 to 4 which does not correspond to a similar increase of the auroral emission. These changes in the emission-absorption ratio has been interpreted as peaks in the energy spectrum of the incoming particles. The structures of auroral emission and auroral absorption are sometimes very similar over periods of hours and the appearance of the structure is usually in the form of an east-west oriented arc. The cross correlation coefficient may be as high as 0·9 during these events over long periods of time. However, a number of exceptional cases have appeared where little structure was found in the riometer record while the photometer showed structure and vice versa.  相似文献   

5.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   

6.
The rate at which O(1S) is quenched in the atmosphere has been calculated as a function of altitude in the 75–115 km region. Recent measurements of the temperature-dependent O 2 quenching rate coefficient have been used, while for quenching by O(3P), an expression combining new theoretical and experimental results is employed. For the O(3P) altitude profile, the Jacchia (1971) model is chosen. The quenching profile shows a pronounced minimum quenching rate at about 87 km. It is concluded that different studies carried out on pulsating Type-B red aurorae, which extract an O(1S) quenching rate from the time lag between N 2+(B?X) emission and 5577-Åemission, can now be interpreted as indicating an altitude range for these aurorae of 84–89 km. This conclusion is in accord with observations made on artificial aurorae.  相似文献   

7.
Given that a strong 14C variation in AD 775 has recently been suggested to be due to the largest solar flare ever recorded in history, it is relevant to investigate whether celestial events observed around that time may have been aurorae, possibly even very strong aurorae, or otherwise related to the 14C variation (e.g. a suggested comet impact with Earth's atmosphere). We critically review several celestial observations from AD 757 to the end of the 770s, most of which were previously considered to be true, and in some cases, strong aurorae; we discuss in detail the East Asian records and their wording. We conclude that probably none among the events after AD 770 was actually an aurora, including the event in AD 776 Jan, which was misdated for AD 774 or 775; the observed white qi phenomenon that happened above the moon in the south‐east was most probably a halo effect near the full Moon – too late in any case to be related to the 14C variation in AD 774/5. There is another report of a similar (or identical) white qi phenomenon above the moon, reported just before a comet observation and dated to AD 776 Jan; the reported comet observed by the Chinese was misdated to AD 776, but actually sighted in AD 767. Our critical review of East Asian reports of aurorae circa AD 775 shows some very likely true Chinese auroral displays observed and reported for AD 762; there were also several events prior to AD 771 that may have been aurorae but are questionable. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The relative variations between 82 km and 205 km in the emission rates of nightglow radiation features at 5300 Å, 5577 Å, 5893 Å and 6300 Å have been photometrically measured from a Skylark rocket flown from Woomera, S. Australia at 2053 hours CST (1123 hours GMT) on 18 October, 1965.

Emission profiles obtained for the first three features show that these layers have their centre of intensity at, respectively, 94.0 ± 1 km, 94.5 ± 0.5, and 98.0 ± 2 km. The results further indicate that not more than 10% of the 6300 Å radiation was emitted below apogee at 205 km.

By virtue of a rather complicated vehicle motion—almost a slow tumble in the vertical plane—evidence is adduced which suggests that differences between these profiles and those of previous flights could be explained by insufficient or incorrect account being then taken of the contamination from extra-atmospheric sources such as starlight and galactic light.

Regarding the continuum, it is found that, depending on the particular region of sky background, up to 80% of the 5300 Å emission observed from the Earth may be extra-atmospheric in origin. Furthermore, of the extra-atmospheric component, again depending on the viewing direction in the sky, the emission intensity at 5577 Å may be from 10% to 50% greater than that at 5300 Å.

While it is to be expected that, before penetrating the layer, the zenithal emission intensity as registered by the photometers should remain constant, this constancy was not generally observed and the 5300 Å and 5577 Å photometers, both of which were independently duplicated, indicate an initial increasing emission intensity. Marked differences in the variation of each pair of photometers suggest that interpretation by means of aerosol absorption of the radiation in the 80 to 100-km region is incorrect and that the effect is probably instrumental in origin and of a temporary nature.  相似文献   


9.
One thousand and fifty-two aurorae boreales and 554 aurorae australes recorded during the nineteenth century at medium latitudes 55° N or 55° S are compared statistically with the known hemispherical asymmetry of the sums of the areas of sunspots. According to the present study, the solar hemispherical asymmetry may be accompanied by an analogous pattern of the hemispherical frequency of auroral days. For the number of auroral days in each hemisphere beyond the two auroral ovals, a remarkable degree of phase equality with the sunspot areas during the second Gleissberg cycle can be demonstrated.  相似文献   

10.
Unusual auroral emission at mid-latitudes, showing nearly exclusively the green oxygen line (557.7 nm) and occurring during the early part of the recovery phase after strong magnetic storms is described. The emission has a life-time of up to several hours, consists of cloud-like patches and appears quite isolated at medium latitudes with no simultaneous aurorae at higher latitudes. The name “post-storm mid-latitude green aurora” is proposed for this emission. For the event observed during the night of 29–30 August 1978, additional ionospheric measurements from heights below the mid-latitude aurora (?min, A3-LF data) are available from nearby observations. Our investigation shows that the emission was observed just at the beginning of a post-storm effect (PSE) in ionospheric absorption. The optical and absorption data have been used to extract information on precipitating high-energy electrons, assumed to be the cause of both the optical emisson and the excessive absorption. During the night in question precipitating electrons with fluxes above the quiet-time level and energies upto at least 200 keV were found in a region extended in latitude (2.7 < L < 3.3) and probably even more extended in longitude. Latitudinally narrow bands, elongated along shells of constant L, with extremely high fluxes of 10–20keV electrons (according to our estimates at least 5. 107 el cm?2s?1) were embedded within this region.  相似文献   

11.
Inherent in observations of thermospheric winds from the ground with the Fabry-Perot interferometer is the assumption that the measured Doppler shift is a property of the source medium viewed by the instrumental line of sight. However, ground based airglow observations in regions of weak airglow emission near large intensity gradients may be contaminated by scattered light. Light from areas where the emission is strong can be scattered by the lower atmosphere into the field of view of the observations. Thermospheric winds deduced from the observed Doppler shifts will then show apparent convergence or divergence with respect to the site of observation. Examples of this effect are found in observations by the Michigan Airglow Observatory station located near the auroral zone at Calgary, Alberta. Simulation calculations based upon an experimental model for a significant scattering atmosphere also showed results with either convergence or divergence in the apparent neutral wind field observed by the station.  相似文献   

12.
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between  2 × 104  and  1.5 × 105 yr  . We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H  ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.  相似文献   

13.
Auroral research     
An auroral substorm, unique in that it occurred at the relatively low latitude of SANAE, is described based on the full range of observational techniques at SANAE together with satellite data. Some features fit the generally accepted picture of substorms, others do not. From ground-based television imagery of Giant Undulations the temporal evolution of their dynamics is obtained and possible theories for their extistence examined. Super fast auroral waves, with speeds of up to 1200 km s–1, have been observed for the first time. Their characteristics can not, as yet, be accounted for by a single generation mechanism. The potential value of simultaneous recordings of aurorae by television and riometer is discussed  相似文献   

14.
15.
A large variation in 14C around AD 775 has been considered to be caused by one or more solar super‐flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakır in Turkey near the Turkish‐Syrian border), which were not only red, but also green‐yellow – being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super‐flares causing the 14C increase around AD 775: There are several reports about low‐ to mid‐latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi‐)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 – always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD ∼733 to ∼823, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles – reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked‐eye sunspots, we discuss two more Schwabe cycles until AD ∼844. The 14C record (from both Intcal and Miyake et al. 2013a) is anti‐correlated to auroral and sunspot activity, as expected from solar wind modulation of cosmic rays which produce the radiocarbon. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A study is made of the intensity distribution among the bands of the Meinel and first negative system of N2+ due to resonance scattering of sunlight. Absolute transition probabilities are used to calculate the relative populations among the ion states under resonance scattering conditions; the mean lifetime for deactivation is the parameter which determines the amount of resonance scattering. Photon scattering rates are calculated for most of the ion bands and it is suggested that an appropriate value for the 3914 Å band would be 0·050 photons/ sec per ion. Observations of the Δυ = −1 sequence of the first negative system in the twilight spectrum are reported. Extended vibrational development is detected which indicates that only about 80 per cent of the emission is resonance scattered. Sunlit auroral spectra of N2+, however, which have been generally considered to be due predominantly to resonance scattering, indicates only about 40 per cent of the emission is due to resonance scattering. Measurable effects resulting from a charge-transfer ion source (O+(2D)) are predicted.  相似文献   

17.
Band spectra of BaO covering a total wavelength region of 5050 Å-9300 Å were recorded from the ground with a scanning spectrophotometer at 7.1 Å resolution during a series of barium rocket releases at College, Alaska in the Spring of 1969. Rotational and vibrational temperatures, both equal to approximately 850°K at the release altitude of 170 km, were inferred by matching the release spectra with calculated synthetic spectra. This temperature persisted throughout the observing period, from release + 20 sec to 14 min after release.

Analysis of the BaO band spectrum over a large wavelength region reveals that rotational temperatures are best determined at wavelengths below 5500 Å, and that vibrational temperatures should be measured at wavelengths greater than 5500 Å. Comparisons with synthetic spectra show that several broad emission features in the release spectra, located at about 7900 Å 8400 Å and 9000 Å, may be identified as clusters of overlapping BaO bands. A synthetic spectrum of BaO extending from 4700 Å to 15,000 Å is included for general reference and to facilitate future studies in that wavelength region.  相似文献   


18.
The visible airglow photometer on the Atmosphere Explorer C Satellite has been used to compare the calibrations of a number of ground-based airglow observatories. Discrepancies between different ground stations as large as a factor of six have been revealed. Efforts to account for these discrepancies have resulted in the discovery of differences as large as a factor of 2 in the standard light sources in use at different observatories. The participation of additional observatories in the intercomparison of standard sources is solicited. The project has also led to the discovery of a source of error that can amount to another factor of 2 in the procedure used to calibrate many airglow instruments. In the course of the project detailed maps, based on satellite data, have been made of the galactic and zodiacal light background at a number of wavelengths, and a substantial source of contaminating emission has been discovered in the satellite data; the contamination appears to result from interaction of the spacecraft and the atmosphere at altitudes below 170 km.  相似文献   

19.
Measurements of the O2(A3Σ − X3Σ) Herzberg system in the night airglow have been made with the ESRO TD-1 satellite in the wavelength range 2400–3100 A. The slant emission rate varies from 3.5 to 15 kR, indicating an irregular structure of the atomic oxygen near the turbopause. A statistical maximum intensity is found near the tropic in the winter hemisphere. The intensity profile is consistent with excitation by three-body recombination of oxygen atoms. The observed total emission rate can be accounted for by reasonable atomic oxygen densities and an O2(A3Σ) production efficiency of about 20% if quenching by N2 occurs at the rate deduced from laboratory and other airglow measurements.  相似文献   

20.
The absolute cross-sections for the excitation of the 989 Å, 1027 Å, 7990 Å, 8446 Å, 1.1287 μm and 1.3164 μm multiplets of atomic oxygen by electron impact dissociation of O2 are reported. The radiative branching ratios for these transitions are calculated from these results and compared with the NBS compilation of Wiese et al. (1966) and the recent theoretical calculations of Pradhan and Saraph (1977). The cascade models of O+ radiative recombination and of electron-impact excitation of the OI(3S) state in the terrestrial airglow are discussed in the light of the laboratory measurements, and the effects of the resonant absorption of components of the λ 989 Å and λ. 1027 Å multiplets by the Birge-Hopfield band system of N2 are investigated. This process is shown to depend sensitively on the N2 vibrational temperature and to cause characteristic changes in the OI e.u.v. emission spectrum in auroras and in the sunlit F-region at high exospheric temperatures. It is also suggested that the λ 1027 Å radiation observed in auroral spectra is actually due to molecular nitrogen band emission that has been enhanced by entrapment effects and not to the excitation of the 2p 3P-3d 3D0 transition of atomic oxygen as believed previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号