首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

2.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

3.
Summary. In order to separate the scattering effect from the intrinsic attenuation, we need a multiple scattering model for seismic wave propagation in random heterogeneous media. In this paper, we apply radiative transfer theory to seismic wave propagation and formulate in the frequency domain the energy density distribution in space for a point source. We consider the cases of isotropic scattering and strong forward scattering. Some numerical examples are shown. It is seen that the energy density–distance curves have quite different shapes depending on the values of medium seismic albedo B 0s/(ηsa) where ηs is the scattering coefficient and ηa is the absorption coefficient of the medium. For a high albedo ( B > 0.5) medium, the energy–distance curve is of arch shape and the position of the peak is a function of the extinction coefficient of the medium ηesa. Therefore it is possible to separate the scattering effect and the absorption based on the measured energy density distribution curves.  相似文献   

4.
Summary. Attenuation of earthquake intensities with epicentral distance was studied by analysing the intensity data for 39 earthquakes in the United States. Attenuation of MM intensity ( I ) with distance (Δ km) follows a simple relation of the type log I = log I 0 - m Δ, where I 0 is the intensity at the epicentre and m is a constant. Slope m is found to be inversely proportional to the square of the focal depth. Intensity attenuation pattern in the United States in general can be represented by a unified relation I/I 0= exp [-(0.8999/ h 2+ 0.0014)Δ] where 16km ≤ h ≤ 60km. Intensities were calculated with the help of this equation and a good agreement with the observed intensities were found. A comparative study has also been made between the attenuation relations applicable to India and the United States.  相似文献   

5.
The investigation of L g attenuation characteristics in the region bounding the western branch of the East African rift system using digital recordings from a seismic network located along the rift between Lake Rukwa and Lake Malawi is reported. A set of 24 recordings of L g waves from 12 regional earthquakes has been used for the determination of anelastic attenuation, Q Lg , and regional body-wave magnitude, m b Lg , scale. The events used have body-wave magnitudes, m b , between 4.6 and 5.5, which have been determined teleseismically and listed in ISC bulletins. The data were time-domain displacement amplitudes measured at 10 different frequencies (0.7–5.0  Hz). Q Lg and its frequency dependence, η , in the region can be represented in the form Q Lg = (186.2 ± 6.5)  f  (0.78±0.05). This model is in agreement with models established in other active tectonic regions. The L g -wave-based magnitude formula for the region is given by m b Lg = log   A + (3.76 ± 0.38)  log   D − (5.72 ± 1.06), where A is a half-peak-to-peak maximum amplitude of the 1  s L g wave amplitude in microns and D is the epicentral distance in kilometres. Magnitude results for the 12 regional earthquakes tested are in good agreement with the ISC body-wave magnitude scale.  相似文献   

6.
This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 ( M s= 8.0) and 1755 ( M = 8.5–8.7) earthquakes.
First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large ( M s= 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. Then, we extrapolate the method to the case of the great ( M = 8.5–8.7) 1755 earthquake, for a series of hypotheses recently proposed by three authors about the location of the epicentral region. The model involving a subduction-related rupture in the Gulf of Cádiz results in excessive ground motion in northern Morocco, suggesting that the source of the 1755 earthquake should be located further west. A rupture along the western coast of Portugal, compatible with an activation of the passive western Iberian margin, would imply a relatively low average slip, which, alone, would could not account for the large tsunami observed in the whole northern Atlantic ocean. A seismic source located below the Gorringe Bank seems the most likely since it is more efficient in reproducing the distribution of high intensities in SW Iberia due to the 1755 earthquake.  相似文献   

7.
Magnetic susceptibility ( χ ) variations and the behaviour of the ratio of susceptibility to saturation magnetization ( χ/J s ) along the loess/palaeosol section at Koriten (NE Bulgaria) are used to deduce climatic changes during the Pleistocene in southeastern Europe. A good correlation of susceptibility variations with the astronomically tuned oxygen isotope record from ODP site 677 enables us to propose a more precise dating of the upper part of the Bulgarian loess complex. Close correspondence between susceptibility and δ 1 8 O records demonstrates the global significance of the palaeoclimatic signal recorded, although differences in relative amplitudes of χ and χ/J s and δ 1 8 O create difficulties in making quantitative estimates of the climatic humidity in the past. The role of local factors affecting the palaeoclimatic mineral magnetic record deduced from the profile studied in Bulgaria is discussed.  相似文献   

8.
Coercive force of single crystals of magnetite at low temperatures   总被引:1,自引:0,他引:1  
The temperature dependence of coercive force H c was studied on well-characterized and stoichiometric millimetre-sized single crystals of magnetite at a series of 16 temperatures from 300 to 10 K using a SQUID magnetometer. H c decreases gradually with cooling to the isotropic temperature, T i = 130 K, where the first magnetocrystalline anisotropy constant K 1 becomes zero. H c exhibits a sharp increase at the Verwey transition, T v = 120 K, where the structure changes from cubic to monoclinic. In crossing the Verwey transition, H c increases by more than two orders of magnitude, from 20 μT to 2.4 mT, and the shape of the hysteresis loops becomes wasp-waisted.
Observed coercivity between 300 K and 170 K varies with temperature as λ s / M s , where λ s is the magnetostriction constant and M s is the saturation magnetization, indicating that the coercivity in MD magnetite is controlled mainly by internal stress associated with dislocations or other crystal defects. It seems likely that the stable single-domain-like magnetic memory observed in large MD magnetite crystals is due to magnetoelastically pinned domain walls. The discontinuous change in H c at the Verwey transition is controlled by abrupt changes in magnetocrystalline and magnetostriction constants due to crystal deformation from cubic to monoclinic structure.  相似文献   

9.
Magnitude corrections for attenuation in the upper mantle   总被引:3,自引:0,他引:3  
Summary. The m b: M s relation for explosions at the Nevada Test Site (NTS) differs from those for explosions in other parts of the world. There is considerable evidence that this results mostly from high body-wave attenuation in the upper mantle beneath the western US. The authors have developed an empirical magnitude correction for body-wave attenuation and applied it to both source and receiver ends of the teleseismic body-wave path. The results imply that m b values are lower for NTS explosions than for Soviet explosions of comparable yield and seismic coupling. The authors have also developed and applied a source-depth correction to account for pP-P interference in the P -wave arrival.
The body-wave magnitude resulting from these corrections is designated mo to distinguish it from other definitions of m b. Values of mQ determined for a world-wide set of large explosions show that a single mQ : yield relation is a fair fit to the data for the explosions with high seismic coupling. However, grouping the explosions under two mQ :yield relations gives a better fit to the data.
All the studied explosions in salt or granite or below the water table fit a common M s:yield relation. Explosions from North America, Eurasia and Africa have a common mQ : M s relation.  相似文献   

10.
Summary. Differences between estimated average heat flow values for the Mesozoic and Cenozoic formations ( Q 1) and estimated average heat flow values for the Palaeozoic formations below the erosional unconformity ( Q 2) are calculated for the Alberta part of the western Canadian sedimentary basin. Significant heat flow differences exist for these two intervals and the map of Δ Q = Q 1– Q 2 shows that Q 2 is generally greater than Q 1 in the western and south-western part of Alberta, while in the northern part of the province Q 2 is generally less than Q 1. The regional variations of Δ Q are large, with standard deviation of 26 mW m−2 and average value –13.5 mW m−2. A regional trend of Δ Q correlates with topographic relief and the hydraulic head variations in the basin. It is shown that there is a heat flow increase with depth in water recharge areas and a decrease in heat flow with depth in the low topographic elevation water discharge areas when comparing the average heat flow in Mesozoic + Cenozoic and Palaeozoic formations.  相似文献   

11.
A cause of bias in estimates of distance and station terms used to compute seismic magnitudes ( m b) is demonstrated in a comparative study on the world amplitude–distance curve. This bias results from the presence of station thresholds in the measurement and reporting of seismic amplitudes and is analogous to that known to be present in routinely computed magnitudes. Distance terms corresponding to low amplitudes such as in the core shadow will tend to be positively biased as are station terms for stations with high thresholds.  相似文献   

12.
The ability of seismological criteria to identify earthquakes from underground explosions depends partly on the orientation of the earthquake source. Well-determined double-couple moment tensor solutions for a large number of earthquakes have been published in the Harvard centroid moment tensor (CMT) and United Slates Geological Survey (USGS) catalogues. Statistical analyses of these catalogues indicate that the distribution of the orientation of earthquake mechanisms is not random. The distribution of the T axes shows significant clustering around the downward vertical, indicating that a larger number of earthquake mechanisms radiate compressional P -wave energy to teleseismic distances from near the maximum of the radiation pattern than is predicted if earthquake sources are randomly oriented double couples. The clustered T axes correspond to compressional dip-slip mechanisms, and it is this type of mechanism which is believed to cause both the m b: M s (the ratio of body-wave to surface-wave magnitude) and first-motion criteria to misidentify an earthquake as an explosion.  相似文献   

13.
Summary. A simple method is presented which combines the reciprocity theorem and the flat layer theory to yield teleseismic body wave radiation from seismic sources embedded in the Earth's crust. The source is represented by its equivalent body forces and can be quite general. The effect of Yucca Flat geology on explosion signals is studied in detail. In particular, the m b— M s relation is shown to be dependent on detonation medium and source depth. Application to shallow earthquake faults demonstrates the strong influence of free surface and layering on the shape of P- and S-wave teleseismic spectra.  相似文献   

14.
Summary. We present the results of a systematic study of events with M s > 6 in northern Chile (20–33°S), for the period between 1963 and 1971. Medium to large earthquakes near the coast of this region are of three types: (1) Interplate events at the interface between the downgoing slab and the overriding South American plate. These events can be very large reaching magnitudes greater than 8. (2) Intra-plate earthquakes 20–30 km inside the downgoing slab. They have fault mechanisms indicating extension along the dip of the slab and may have magnitudes up to 7.5. (3) Less frequent, M s∼ 6 events that occur near the top of the downgoing slab and have thrust mechanisms with an almost horizontal E-W compressional axis. This type of mechanism is very different from that of the events of type 1 which are due to shallow dipping reverse faulting. There is a rotation of about 30° of the compressional axis in the vertical plane between events of types (1) and (3). Three groups of events near 32.5°, 25.5° and 21°s were studied in detail. Depth and mechanisms were redetermined by P -wave modelling and relative locations were obtained by a master event technique. Near 32.5°S, only events of types 1 and 2 were found in the time period of this study. At the two other sites, the three types of events were identified. This shows clearly that there are compressive stresses at the top of the slab and extension at the centre, a situation which is usually found in the areas where a double Benioff-zone has been identified in the seismicity.  相似文献   

15.
Summary. This note presents an exact analytical formula for determining the magnitude of coseismic surface volume change (δ V ) of earthquake faults in a half-space. For a Poisson solid, the formula is remarkably simple; δ V = M zz |8μ, where M zz is one of the moment tensor elements of the source. Maximum δ V values derive from dip slip on faults plunging 45°. For these events, surface volume changes of 0.0001 and 4.3 km3 can be expected for magnitude 5 and 8 earthquakes respectively. All of the coseismic surface volume change is recovered in the interseismic period through relaxation of the Earth and rebound of the surface. A useful rule of thumb for estimating the magnitude of vertical rebound in 45° dip slip events is δ h p=Δ s /24, where Δ s is the coseismic slip on the fault.  相似文献   

16.
Summary An extension of the Love-Larmor theory to a low-loss unelastic earth model, leads to the surprisingly simple approximation
   
where τs= 447.4 sidereal day is the static wobble period, τR= 306 sidereal day is the rigid-earth wobble period and τw= 433 sidereal day is the observed Chandler period. Q W, Q μ are the respective average Q values of the wobble and the Earth's mantle at τW. The known numerical factor F is only slightly dependent on the Earth structure.  相似文献   

17.
18.
b
The amplitude of vertical, short period (1 s) Lg -waves from 575 shallow earthquakes recorded within the distance range 0|Mo-30|Mo by the Rhodesian seismograph network during the period 1968–77 are analysed to separate the effects of earthquake size, epicentral distance and station structure.
When corrected for geometrical spreading and Airy phase dispersion the decay of amplitude with distance yields an estimate of anelastic attenuation of 0.160 deg-1 which gives an average value of Q (the specific quality factor) of 603 |Mp 50 for propagation paths that lie along and across the East African Rift System. Inversion of the amplitude—distance curve gives the calibration or distance normalizing function. Thereby the amplitude of Lg can be used to provide an estimate of the size of small, local earthquakes in terms of the teleseismic body wave magnitude mb (after Henderson). The station effects of the six seismograph stations making up the network all lie within |Mp0.1 magnitude units. Since three of the stations lie on the Rhodesian craton while the remaining three lie on Precambrian mobile belts adjacent to the craton, the Precambrian basement geology does not significantly affect the amplitude of Lg  相似文献   

19.
20.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号