首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 Introduction Nowadaysglobalclimatechangehasbeenanimportantissueintheworld.Antarctic areaisjustthekeyandsensitiveregion,fromwhichscientistsaretryingtheirbesttofind theomenofglobalclimatechange.Andfortherevolvingglobalatmosphere,PolarRegions arecoldsource.TheoceanicandatmosphericconditionofPolarRegionsisimportantto globalatmosphericcirculationandclimatechange.Antarcticareaisoneofthecoldsources ofglobalearth atmospheresystem,whileequatorialareaisitsmainheatsource(seeZhou andLuetal.1996).…  相似文献   

2.
In this paper we examine the relationship between Antarctic krill catch, sea ice concentration, and sea surface tempera- ture (SST). Data on the Antarctic krill catch from 2003 to 2010 in CCAMLR Area 48.2 were combined with sea ice and SST data. Results showed that krill fishing in Area 48.2 took place from February to August each year but the catch was concentrated from March to July, with production during this period accounting for about 99.3% of the annual catch. Regression analysis showed that the catch per unit effort (CPUE) was clearly related to sea ice concentration and SST intervals. CPUE was negatively correlated with the area of sea ice among years (R2=0.64), and the correlation was strongest (R2=0.71) when sea ice concentration was greater than 90%. Over the months the CPUE initially increased, then decreased as the area of sea ice increased. The relationship was strongest (R2=0.88) when the concentration of sea ice was 60%--70%. There was no negative correlation among years between CPUE and the ice-free area when S ST was between -2 ℃ and 3 ℃ (R2=0.21), but there was a significant negative correlation when SST was between 1 ℃ and 2℃ (R2=0.82). Over the months, CPUE initially increased then decreased with increasing sea ice-free area, and the relationship was strongest (R2=0.94) when SST was between 0℃and 1 ℃. This study shows that sea ice concentra- tion and SST have significant effects on the abundance of krill in Area 48.2, and the findings have practical significance for the use and conservation of Antarctic krill resources.  相似文献   

3.
Flat thin ice (<30 cm thick) is a common ice type in the Bohai Sea, China. Ice thickness detection is important to offshore exploration and marine transport in winter. Synthetic aperture radar (SAR) can be used to acquire sea ice data in all weather conditions, and it is a useful tool for monitoring sea ice conditions. In this paper, we combine a multi-layered sea ice electromagnetic (EM) scattering model with a sea ice thermodynamic model to assess the determination of the thickness of flat thin ice in the Bohai Sea using SAR at different frequencies, polarization, and incidence angles. Our modeling studies suggest that co-polarization backscattering coefficients and the co-polarized ratio can be used to retrieve the thickness of flat thin ice from C- and X-band SAR, while the co-polarized correlation coefficient can be used to retrieve flat thin ice thickness from L-, C-, and X-band SAR. Importantly, small or moderate incidence angles should be chosen to avoid the effect of speckle noise.  相似文献   

4.
An overview of the seasonal variation of sea-ice cover in Baffin Bay and the Labrador Sea is given. A coupled ice-ocean model, CECOM, has been developed to study the seasonal variation and associated ice-ocean processes. The sea-ice component of the model is a multi-category ice model in which mean concentration and thickness are expressed in terms of a thickness distribution function. Ten categories of ice thickness are specified in the model. Sea ice is coupled dynamically and thermodynamically to the Princeton Ocean Model. Selected results from the model including the seasonal variation of sea ice in Baffin Bay, the North Water polynya and ice growth and melt over the Labrador Shelf are presented.  相似文献   

5.
1 Introduction Itiswellknownthatseaiceinthepolarregionplaysanimportantroleintheglobal climatechangesasapartofclimatesystem(Carleton1989;YuanandMartinson2000, 2001;ChengandBian2002;LiuandMartinson2002;LiuandZhang2004;Gigorand Wallace2002etal).Infact,numerousmodelingstudiessuggestanimportantinfluence throughtheseaicefieldsalone(Grumbine1994,Meehl1990,Rindetal.1995).Inor dertounderstandthevariabilityofArcticandAntarcticseaicealongwiththepossiblecon nectionswithclimaticanomaliesindetail…  相似文献   

6.
1 IntroductionFromitsoriginalformulationin 1 990 ,theInternationalTrans AntarcticScientificExpedition (ITASE)hashadasitsprimaryaimthecollectionandinterpretationofacon tinental widearrayofenvironmentalparametersassembledthroughthecoordinatedeffortsofscientistsfromseveralnations(Mayewskietal.1 996) .AsaconsequenceITASEhasbeenfocusedtoaddresstwokeyscientificobjectives:1 )Todeterminethespatialvariabil ityofAntarcticclimate (eg.accumulation,airtemperature,atmosphericcirculation)overthelast2…  相似文献   

7.
The ice algal and phytoplankton assemblages were studied from Nella Fjord near Zhongshan Station, East Antarctica from April 12 to December 30, 1992. Algal blooms occurred about 3 cm thick on the bottom of sea ice in late April and mid November to early December respectively, and a phytoplankton bloom appeared in the underlying surface water in mid December following the spring ice algal bloom. The biomass in ice bottom was 1 to 3 orders of magnitude higher than that of surface water. Amphiprora kjellmanii, Berkeleya sp., Navicula glaciei, Nitzschia barkelyi, N. cylindrus /N. curta, N. lecointei and Nitzschia sp. were common in the sea ice temporarily or throughout the study period. The biomass in a certain ice segment was decreased gradually and the dominant species were usually succeeded as the season went on. Nitzschia sublineata and Dactyliosolen antarctica were two seasonal dominant species only observed in underlying water column. The assemblages between bottom of ice and underlying surface water were different except when spring ice algae bloomed. The evidence shows that the ice algal blooms occurred mainly by in situ growth of ice algae, and the phytoplankton bloom was mostly caused by the release of ice algae.  相似文献   

8.
During years 1980/1981–2012/2013, inter-annual variations in sea ice and snow thickness in Kemi, in the northern coast of the Gulf of Bothnia, Baltic Sea, depended on the air temperature, snow fall, and rain. Inter-annual variations in the November—April mean air temperature, accumulated total precipitation, snow fall, and rain, as well as ice and snow thickness in Kemi and ice concentration in the Gulf of Bothnia correlated with inter-annual variations of the Pacific Decadal Oscillation(PDO), Arctic Oscillation(AO), North Atlantic Oscillation(NAO), Scandinavian Pattern(SCA), and Polar / Eurasian Pattern(PEU). The strong role of PDO is a new finding. In general, the relationships with PDO were approximately equally strong as those with AO, but rain and sea ice concentration were better correlated with PDO. The correlations with PDO were, however, not persistent; for a study period since 1950 the correlations were much lower. During 1980/1981—2012/2013, also the Pacific / North American Pattern(PNA) and El Nino–Southern Oscillation(ENSO) had statistical connections with the conditions in the Gulf of Bothnia, revealed by analyzing their effects combined with those of PDO and AO. A reduced autumn sea ice area in the Arctic was related to increased rain and total precipitation in the following winter in Kemi. This correlation was significant for the Pan-Arctic sea ice area in September, October, and November, and for the November sea ice area in the Barents / Kara seas.  相似文献   

9.
Arctic sea ice in the polar region provides a cold habitat for microbial community. Arctic sea ice microorganisms are revealed to be of considerable importance in basic research and potential in biotechnological application. This paper investigated the culture condition and extraceIlular hydrolase of 14 strains of different Arctic sea ice bacteria. The results showed that optimal growth temperature of strains is 15 ℃ or 20 ℃. The optimal pH is about 8.0. They hardly grow at acid condition. 3 % NaCl is necessary for better growth. These strains have different abilities in producing amylase, protease, eellulase and lipase. Pseudoalteronomas sp. Bsi429 and Pseudoalteronomas sp. Bsi539 produced both cellulose, protease and lipase. These results provide a basis for further developing and exploiting the cold adapted marine enzyme resources.  相似文献   

10.
Bacterial diversity in sea ice brine samples which collected from four stations located at the Canada Basin, Arctic Ocean was analyzed by PCR-DGGE. Twenty-three 16S rDNA sequences of bacteria obtained from DGGE bands were cloned and sequenced. Phylogenetic analysis clustered these sequences within γ-proteobacteria, Cytophaga-Flexlbacter-Bacteroides (CFB) group, Firmicutes and Actinobacteria. The phylotype of Pseudoalteromonas in the γ-proteobacteria was predominant and members of the CFB group and γ-proteobacteria were highly abundant in studied sea ice brine samples.  相似文献   

11.
Analysis of sensible heat flux(Qh),latent heat flux(Qe),Richardson number(Ri),bulk transport coefficient(Cd) and katabatic winds are presented by using the meteorological data in the near surface layer from an automatic weather station(AWS) in Princess Elizabeth Land,East Antarctica ice sheet and the data of corresponding period at Zhongshan station in 2002.It shows that annual mean air temperature at LGB69 is-25.6°C,which is 16.4°C lower than that at Zhongshan,where the elevation is lower and located on the coast.The temperature lapse rate is about 1.0°C/110 m for the initial from coast to inland.The turbulence heat flux at LGB69 displays obvious seasonal variations with the average sensible heat flux-17.9 W/m2 and latent heat flux-0.9 W/m2.The intensity(Qh Qe) of coolling source is-18.8 W/m2 meaning the snow surface layer obtains heat from atmosphere.The near surface atmosphere is near-neutral stratified with bulk transport coefficients(Cd) around 2.8×10-3,and it is near constant when the wind speed higher than 8 m/s.The speed and the frequency of easterly Katabatic winds at LGB69 were higher than that at Zhongshan Station.  相似文献   

12.
1 Introduction TheArcticOceanisoneoftheimportantcoldregionsontheearth,whichcanaffect globalclimateandoceancirculationseriously.Itsinteractionwiththeglobalclimatesystem isrepresentedbyseaice,whichisthemainfeatureonthesurfaceoftheArcticOcean(Aa gaardandCarmack1989).First,seaiceplaysapivotalroleintheheatandmassbalance onthesurfaceoftheArcticOcean.Seaicenotonlyobstructstheheatexchangebetweenat mosphereandocean,butalsoreflectsmostsolarradiationbacktotheatmospherebecause ofitshighalbedo(Gre…  相似文献   

13.
14.
1 IntroductionManymeteorologistsandoceanographerspaidmuchattentiontothestudyofthemechanismofENSOformanyyears,suchasBjerknes(1 966) ,Wyrtki(1 975) ,McCreary(1 983 ) ,Philander(1 984) ,ZhangandChao(1 993 )andMcCPhaden(1 998)havemadegreatdevelopmentinthestudyofENSO .Especiallyinthe 1 990’s,withtheincreasingofthedatainthedeepocean ,thesomeonearguedthattheENSOepisodehadcloserelation shipwiththeeasterntransportationoftheanomalousseasurfacetemperatureinthewestPacific(LiandMu 1 999;Huang 2…  相似文献   

15.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

16.
1 IntroductionSeaice ,asanimportantcomponentoftheArcticclimatesystem ,hasdrawnsignifi cantscientificinterest.Seaicethicknessanditsmorphologyhavedramaticimpactsono cean atmosphere iceinteractions(Wadhams 1 994;Barryetal.1 993 ;Dickson 1 999;PadhamsandNorman 2 0 0 0 ) ,whichdirectlyaffecttheexchangeprocessandspeedofheatandmassbetweentheoceanandtheatmosphere ,dominatethephysicalmechanicsfea turesofseaice ,andaffecttheseaicemovement&deformationaswellasicefreezing&meltingprocess(Hollandetal.1 99…  相似文献   

17.
Fabric and crystal characteristics of Bohai and Arctic sea ice   总被引:1,自引:0,他引:1  
1 IntroductionBohaione yeariceandAntarcticonehavethesimilarsurface featuresandcorre spondingfabricandcrystalcharacteristics (Allison 1 997;Lietal.1 997;Qin 1 991 ) .DuringtheChinaFirstArcticExpedition ,theresultsinthestudyofone yearicefromBohaiandAntarcticwereusedfo…  相似文献   

18.
One of sea ice core samples was taken from Arctic by the First Chinese National Arctic Research Expedition Team in 1999. 20 vertical and 2 horizontal ice sections were cut out of the ice core sample 2.22 m in length, which covered the ice sheet from surface to bottom except losses for during sampling and section cutting. From the observation and analysis of the fabrics and crystals along the depth of the ice core sample, followings were found. Whole ice sheet consists of columnar, refrozen clastic pieces, granular, columnar, refrozen clastic pieces, granular, columnar and refrozen clastic pieces. This indicates that the ice core sample was 3-year old, and the ice sheet surface thawed and the melt water flowed into ice sheet during summer. Hence, the annual energy balance in Arctic can be determined by the ice sheet surface thawing in summer, and bottom growth in winter. The thickness of the ice sheet is kept constantly at a certain position based on the corresponding climate and ocean conditions; A new  相似文献   

19.
The in situ sea-ice temperature, salinity and density observed from Chinese Antarctic Zhongshan Station have been applied to calculate the vertical profile of sea ice porosity. Based on numerical method, a number of schemes on sea-ice thermal diffusivity versus porosity have been accessed and one optimized scheme is identified by an optimal control model with an advanced distributing parameter system. For simplicity, the internal heating source item was neglected in the heat conduction equation during the identification procedure. In order to illustrate the applicability of this identified scheme, the vertical ice temperature profiles have been simulated and compared with measurements, respectively by using identified scheme and by classical thermodynamic formulae.The comparisons indicated that the scheme describing sea-ice thermal diffusivity and porosity is reasonable. In spite of a minor improvement of accuracy of results against in situ data, the identified scheme has a more physical meaning and could be used potentially in various applications.  相似文献   

20.
The thermodynamic properties of snow cover on sea ice play a key role in the ice-ocean-atmosphere system and have been a focus of recent scientific research. In this study, we investigated the thermodynamic properties of snow cover on sea ice in the Nella Fjord, Prydz Bay, East Antarctica(69°20′S, 76°07′E), near the Chinese Antarctic Zhongshan Station. Our observations were carried out during the 29th Chinese National Antarctic Research Expedition. We found that the vertical temperature profile of snow cover changed considerably in response to changes in air temperature and solar radiation during the summer. Associated with the changes in the temperature profile were fluctuations in the temperature gradient within the upper 10 cm of the snow cover. Results of previous research have shown that the thermal conductivity of snow is strongly correlated with snow density. To calculate the thermal conductivity in this study, we measured densities in three snow pits. The calculated thermal conductivity ranged from 0.258–0.569 W?m-1?K-1. We present these datasets to show how involved parameters changed, and to contribute to a better understanding of melting processes in the snow cover on sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号