首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 781 毫秒
1.
The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approxim  相似文献   

2.
The Xiongdian eclogite occurring in the Sujiahe tectonic melange zone at Luoshan County, Henan Province, in the western Dabie Mountains, is typical high-pressure (HP)-ultrahigh-pressure (UHP) and medium-temperature eclogite. The occurrence, internal texture and surface characteristics of zircons in eclogite were studied rather systematically petrographically combined with the cathodoluminescence (CL) and scanning electron microscope (SEM) methods. Zircons are mainly hosted in garnet and other metamorphic minerals with sharp boundaries, have a multifaceted morphology and are homogeneous or exhibit a metamorphic growth texture in the interior, thus indicating that they are the product of metamorphism. SHRIMP analyses give zircon 206Pb/238U ages of 335 to 424 Ma and show a certain degree of radiogenic Pb loss; therefore it may be inferred that the age of 424? Ma represents the minimum age of a HP-UHP metamorphic age. From the above analyses coupled with previous Sm-Nd, 40Ar-39Ar, U-Pb and 207Pb/206Pb age d  相似文献   

3.
High-pressure metamorphism in the Pohorje Mountains of Slovenia (Austroalpine unit, Eastern Alps) affected N-MORB type metabasic and metapelitic lithologies. Thermodynamic calculations and equilibrium phase diagrams of kyanite–phengite-bearing eclogites reveal PT conditions of >2.1 GPa at T<750°C, but within the stability field of quartz. Metapelitic eclogite country rocks contain the assemblage garnet + phengite + kyanite + quartz, for which calculated peak pressure conditions are in good agreement with results obtained from eclogite samples. The eclogites contain a single population of spherical zircon with a low Th/U ratio. Combined constraints on the age of metamorphism come from U/Pb zircon as well as garnet–whole rock and mineral–mineral Sm-Nd analyses from eclogites. A coherent cluster of single zircon analyses yields a 206Pb/238U age of 90.7±1.0 Ma that is in good agreement with results from Sm-Nd garnet–whole rock regression of 90.7±3.9 and 90.1±2.0 Ma (εNd: +8) for two eclogite samples. The agreement between U-Pb and Sm-Nd age data strongly suggests an age of approximately 90 Ma for the pressure peak of the eclogites in the Pohorje Mountains. The presence of garnet, omphacite and quartz inclusions in unfractured zircon indicates high-pressure rather than ultrahigh pressure conditions. The analysed metapelite sample yields a Sm-Nd garnet–whole rock scatterchron age of 97±15 Ma. These data probably support a single P-T loop for mafic and pelitic lithologies of the Pohorje area and a late Cretaceous high-pressure event that affected the entire easternmost Austroalpine basement including the Koralpe and Saualpe eclogite type locality in the course of the complex collision of the Apulian microplate and Europe.  相似文献   

4.
A typical HP/MT (high pressure/medium temperature) eclogite from Xiongdian, northwestern Dabie Mountains, has been geochronologically studied using the single-zircon U-Pb, 40Ar-39Ar and Sm-Nd methods. Prismatic zircons occurring as inclusions within garnets define a minimum crystallization age of 399.5±1.6 Ma. 40Ar-39Ar dating on amphibole gives a plateau age.of 399.2 ± 4 Ma, which is interpreted as a retrogression age of amphibolite facies. This integrated study enables us to conclude that the age of high-pressure metamorphism is older than 399.5 ± 1.6 Ma, suggesting Caledonian collision between the North China and Yangtze plates. Round zircon within the aggregate of quartz and muscovite gives a concordant age of 301± 2 Ma, reflecting a later retrogression event. An age profile of post-eclogite metamorphism is documented, including amphibolite facies metamorphism at 399.2 Ma shortly after eclogitization and later retrogressive metamorphism at 301 Ma. Sm-Nd mineral isochron of garnet+omphacite gives  相似文献   

5.
Quartz veins in high‐pressure to ultrahigh‐pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U‐Pb dating of zircon from a kyanite‐quartz vein within ultrahigh‐pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA‐ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U‐Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O‐isotope analyses gave similar δ18O values for minerals from both vein and eclogite, indicating that the vein‐forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz–mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700–650 °C in a transition from ultrahigh‐pressure to high‐pressure eclogite‐facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ~500 °C without corresponding metamorphism. In either case, the kyanite–quartz vein formed later than the peak ultrahigh‐pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles.  相似文献   

6.
U–Pb sensitive high resolution ion microprobe (SHRIMP) zircon geochronology, combined with REE geochemistry, has been applied in order to gain insight into the complex polymetamorphic history of the (ultra) high pressure [(U)HP] zone of Rhodope. Dating included a paragneiss of Central Rhodope, for which (U)HP conditions have been suggested, an amphibolitized eclogite, as well as a leucosome from a migmatized orthogneiss at the immediate contact to the amphibolitized eclogite, West Rhodope. The youngest detrital zircon cores of the paragneiss yielded ca. 560 Ma. This date indicates a maximum age for sedimentation in this part of Central Rhodope. The concentration of detrital core ages of the paragneiss between 670–560 Ma and around 2 Ga is consistent with a Gondwana provenance of the eroded rocks in this area of Central Rhodope. Metamorphic zircon rims of the same paragneiss yielded a lower intercept 206Pb/238U age of 148.8±2.2 Ma. Variable post-148.8 Ma Pb-loss in the outermost zircon rims of the paragneiss, in combination with previous K–Ar and SHRIMP-data, suggest that this rock of Central Rhodope underwent an additional Upper Eocene (ca. 40 Ma) metamorphic/fluid event. In West Rhodope, the co-magmatic zircon cores of the amphibolitized eclogite yielded a lower intercept 206Pb/238U age of 245.6±3.9 Ma, which is interpreted as the time of crystallization of the gabbroic protolith. The metamorphic zircon rims of the same rock gave a lower intercept 206Pb/238U age of 51.0±1.0 Ma. REE data on the metamorphic rims of the zircons from both the paragneiss of Central Rhodope and the amphibolitized eclogite of West Rhodope show no Eu anomaly in the chondrite-normalized patterns, indicating that they formed at least under HP conditions. Flat or nearly flat HREE profiles of the same zircons are consistent with the growth of garnet at the time of zircon formation. Low Nb and Ta contents of the zircon rims in the amphibolitized eclogite indicate concurrent growth of rutile. Based on the REE characteristics, the 148.8±2.2 Ma age of the garnet–kyanite paragneiss, Central Rhodope and the 51.0±1.0 Ma age of the amphibolitized eclogite, West Rhodope are interpreted to reflect the time close to the (U)HP and HP metamorphic peaks, respectively, with a good approximation. The magmatic zircon cores of the leucosome in the migmatized orthogneiss, West Rhodope, gave a lower intercept 206Pb/238U age of 294.3±2.4 Ma for the crystallization of the granitoid protolith of the orthogneiss. Two oscillatory zircon rims around the Hercynian cores, yielded ages of 39.7±1.2 and 38.1±0.8 Ma (2σ errors), which are interpreted as the time of leucosome formation during migmatization. The zircons in the leucosome do not show the 51 Ma old HP metamorphism identified in the neighboring amphibolitized eclogite, possibly because the two rock types were brought together tectonically after 51 Ma. If one takes into account the two previously determined ages of ca. 73 Ma for (U)HP metamorphism in East Rhodope, as well as the ca. 42 Ma for HP metamorphism in Thermes area, Central Rhodope, four distinct events of (U)HP metamorphism throughout Alpine times can be distinguished: 149, 73, 51 and 42 Ma. Thus, it is envisaged that the Rhodope consists of different terranes, which resulted from multiple Alpine subductions and collisions of micro-continents, rather similar to the presently accepted picture in the Central and Western Alps. It is likely that these microcontinents were rifted off from thinned continental margins of Gondwana, between the African and the European plates before the onset of Alpine convergence.  相似文献   

7.
A camptonite dike swarm (Agardag alkali-basalt complex) in the western part of the Sangilen Upland abounds in mantle xenoliths. Mineralogical, petrographic, and petrochemical studies show that the dikes are composed of lamprophyres of two groups, basic and ultrabasic. Ar/Ar dating of amphibole and phlogopite megacrysts gives an intrusion age for the dikes of 443.0 ± 1.3 Ma. 206Pb/238U dating of zircon from a glomeroporphyritic intergrowth in camptonite from one of the dikes yielded a core age of 489.0 ± 5.4 Ma. This corresponds to the time of formation of the Chzhargalanta granite–leucogranite complex (489.4 ± 2.6 Ma). The 206Pb/238U age of the zircon rim is 444.0 ± 7.5 Ma. The ages obtained by Ar/Ar dating of amphibole and biotite megacrysts and by U/Pb dating of the magmatic rim of zircon crystal from the camptonite coincide within the dating error, which indicates that the camptonite dikes formed in the Late Ordovician. These dikes are the oldest-known example of mantle-derived xenoliths in mafic volcanic rocks from an off-craton setting. These are samples of the Upper Ordovician lithospheric mantle.  相似文献   

8.
大别山东部花岗片麻岩的锆石U-Pb年龄   总被引:29,自引:0,他引:29  
花岗片麻岩是大别山区除超高压变质杂岩外的另一种重要岩石类型,本文测得南大别二长花岗片麻岩中单颗粒锆石U-Pb不一致线的上交点年龄为789±43 Ma.位于五河一水吼韧性剪切带南缘的糜棱岩化二长花岗片麻岩中锆石的207Pb/206Pb表面年龄接近一致年龄,为715~777 Ma,平均757 Ma,U-Pb不一致线的上交点年龄为815±70 Ma,下交点年龄为482±167 Ma.北大别石英二长片麻岩中锆石207Pb/206表面年龄的变化范围较广,介于594~700 Ma,平均为649 Ma,U-Pb不一致线的上、下交点年龄分别为814±97 Ma和477±77 Ma.这说明这些正片麻岩的侵位时间范围大致为750~850 Ma的晚元古代;南、北大别正片麻岩中的锆石年代学显示它们可能具有相似的形成与演化历史;约480 Ma前后的加里东运动对大别山地区可能也有影响.  相似文献   

9.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

10.
Coesite‐bearing eclogites from >100 km2 in the southern Dulan area, North Qaidam Mountains (NQM) of western China, contain zircon that records protolith crystallization and ultra high pressure (UHP) metamorphism. Sensitive High‐Resolution Ion Microprobe (Mass Spectrometer) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry U–Pb analyses from cathodoluminescence (CL)‐dark zircon cores in a coesite‐bearing eclogite yield an upper intercept age of 838 ± 50 Ma, and oscillatory zoned cores in a kyanite‐bearing eclogite gave a weighted mean 206Pb/238U age of 832 ± 20 Ma. These zircon cores yield steep heavy rare earth element (HREE) slopes and negative Eu anomalies that suggest a magmatic origin. Thus, c. 835 Ma is interpreted as the eclogite protolith age. Unzoned CL‐grey or ‐bright zircon and zircon rims from four samples yield weighted mean ages of 430 ± 4, 438 ± 2, 446 ± 10 and 446 ± 3 Ma, flat HREE patterns without Eu anomalies, and contain inclusions of garnet, omphacite, rutile, phengite and rare coesite. These ages are interpreted to record 16 ± 5 Myr of UHP metamorphism. These new UHP ages overlap the age range of both eclogite and paragneiss from the northern Dulan area, suggesting that all UHP rock types in the Dulan area belong to the same tectonic unit. Our results are consistent with slow continental subduction, but do not match oceanic subduction and diapiric exhumation UHP model predictions. These new data suggest that, similar to eclogites in other HP/UHP units of the NQM and South Altyn Tagh, protoliths of the eclogites in the Dulan area formed in a continental setting during the Neoproterozoic, and then subducted to mantle depth together with continental materials during the Early Palaeozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号