首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Direct Measurements of Deep Currents in the Northern Japan Sea   总被引:5,自引:0,他引:5  
Long-term current measurements by means of subsurface moorings were made for the first time at seven sites in the Japan Basin, the northern part of the Japan Sea. The objective was to directly explore the velocity field in the highly homogeneous deep water mass (the Japan Sea Proper Water) that occupies depths below 500 m. On each mooring three current meters were equipped at an approximately equal distance below about 1000 m depth. Duration of the measurements was 1 to 3 years depending on specific site. This paper describes the basic data set from the moored measurements. It is found that the deep water of the Japan Basin is very energetic with eddies and vertically coherent currents of the order of 0.1 m/s. Surprisingly, the currents and eddies exhibit strong seasonal dependence even in the deepest layers of the Basin. The observed new current features are discussed in comparison with conventional deep circulation pictures derived from hydrographic data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Long-term variability in the intermediate layer of the eastern Japan Basin has been investigated to understand the variability of water mass formation in the East Sea. The simultaneous decrease of temperature at shallower depths and oxygen increasing at deeper depths in the intermediate layer took place in the late 1960’s and the mid-1980’s. Records of winter sea surface temperatures and air temperatures showed that there were cold winters that persisted for several years during those periods. Therefore, it was assumed that a large amount of newly-formed water was supplied to the intermediate layer during those cold winters. Close analysis suggests that the formation of the Upper Portion of Proper Water occurred in the late 1960’s and the Central Water in the mid-1980’s.  相似文献   

3.
The East/Japan Sea is a mid-latitude marginal sea that has undergone dramatic changes during the last 50–60 years. One of the most prominent characteristics of these changes is a rapid decrease in the amount of dissolved oxygen in deep waters. As a consequence of these changes, some investigators have even argued that the East/Japan Sea might become an anoxic sea in the next 200 years. While the causes of these changes are still under investigation, it has been shown that they are mainly due to modifications in the mode of the deep water ventilation system in the East/Japan Sea: a slowdown and complete cessation of bottom water formation accompanied by an enhancement of upper water formation instead. A simple moving-boundary box model (MBBM) was developed in order to analyze and quantify the processes involved in such changes over the last 50–60 years. Using a MBBM, we estimated the levels of several conservative chemical tracers (CFCs, Tritium, SF6, 137Cs) and bioactive tracers (oxygen and phosphate) in the deep water masses of the East/Japan Sea, comparing these with the historical data available, and making predictions for the near future. The model predicts that the East/Japan Sea should remain well-oxygenated, despite recent rapid oxygen decreases in its deep waters, accompanied by such structural changes as a shrinking of its oxygen-depleted deeper waters and an expansion of its oxygen-rich upper waters over the next few decades.  相似文献   

4.
A quantitative estimate of the temperature and salinity variations in the Labrador Sea Water (LSW), the Iceland-Scotland Overflow Water (ISOW), and the Denmark Strait Overflow Water (DSOW) is given on the basis of the analysis of repeated observations over a transatlantic section along 60°N in 1997, 2002, 2004, and 2006. The changes distinguished in the research evidence strong warming and salinification in the layers of the Labrador Sea Water and deep waters at the latitude of the section. The maximum increments of the temperature (+0.35°C) and salinity (+0.05 psu) were found in the Irminger Basin in the core of the deep LSW, whose convective renewal in the Labrador Sea stopped in the mid-1990s. The long-term freshening of the ISOW, which started in the mid-1960s, changed in the mid-1990s to a period of intense stable warming and salinification of this water. By 2005, the salinity in the core of the ISOW in the Iceland Basin increased to the values (~34.99 psu) characteristic of the mid-1970s. In 2002, the warming “signal” of the ISOW reached the Irminger Basin. From 1997 to 2006, the warming and salinification of the columns of the Labrador Sea Water and deep waters became as high as 0.2°C and 0.03 psu, respectively. The character of the long-term variations in the thermohaline properties of the LSW and ISOW from the 1950s evidence that these variations were nearly in-phase and correlated with the low-frequency component of the North Atlantic Oscillation.  相似文献   

5.
By using the archival hydrological data for 1955–1998, we analyze the trends of deep-water thermohaline characteristics of the Black Sea and their interannual and decadal variability. It was discovered that the level of salinity increased at depths greater than 1000 m in the west part of the sea from the mid-1950-s till the early 1980s and the opposite trend was observed for the next 15–20 yr. The average rate of increase in the deep-water salinity between 1960 and 1980 and its decrease after 1980 was equal to 0.05‰ per 20 yr. These facts demonstrate that the water exchange through Bosporus was intensified for the first 25 yr of the analyzed period and weakened for the next 20 yr. The interannual variability with a typical period of 6.5 yr and a quasi-20-yr periodicity are detected against the background of the parabolic trend. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 18–30, July–August, 2006.  相似文献   

6.
Japanese fisheries production in the Japan/East Sea between 1958 and 2003 increased to their peak (1.76 million tons) in the late 1980s and decreased abruptly with the collapse of Japanese sardine. Catch results for 58 fisheries and various environmental time-series data sets and community indices, including mean trophic level (MTL) and Simpson’s diversity index (DI), were used to investigate the impacts of fishing and climate changes on the structure of the fish community in the Tsushima warm current (TWC) region of the Japan/East Sea. The long-term trend in fisheries production was largely dependent on the Japanese sardine that, as a single species, contributed up to 60% of the total production in the Japanese waters of the Japan/East Sea during the late 1980s. Excluding Japanese sardine, production of the small pelagic species was higher during 1960s and 1990s but lower during 1970s and 1980s. This variation pattern generally corresponds with the trend in water temperature, warmer before early 1960s and after 1990s but colder during 1970s and 1980s. The warm-water, large predatory fishes and cold water demersal species show opposite responses to the water temperature in the TWC region, indicating the significant impact of oceanic conditions on fisheries production of the Japan/East Sea. Declines in demersal fishes and invertebrates during 1970s and 1980s suggested some impact of fishing. MTL and DI show a similar variation pattern: higher during 1960s and 1990s but lower during 1970s and 1980s. In particular, the sharp decline during the 1980s resulted from the abundant sardine catches, suggesting that dominant species have a large effect on the structure of the fish community in the Japan/East Sea. Principal component analysis for 58 time-series data sets of fisheries catches suggested that the fish community varied on inter-annual to inter-decadal scales; the abrupt changes that occurred in the mid-1970s and late 1980s seemed to correspond closely with the climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.  相似文献   

7.
The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.  相似文献   

8.
During the SoJaBio expedition, the deep sea fauna of the north-western Sea of Japan was sampled in August–September 2010. From this study, 11 epibenthic sledge stations are analyzed, with a focus on species composition, diversity and distribution patterns of polychaetes. A total of 92 polychaete taxa belonging to 70 genera and 28 families and 3 indeterminate species were found. Twelve species and eight genera have not been reported from the Sea of Japan before, but were registered from other deep-sea basins. Calculation of diversity (Shannon–Wiener Index, Pielou's Evenness) showed that the upper bathyal of the Sea of Japan is an area of higher polychaete diversity than the abyssal plain. The increased richness and diversity here could possibly be explained by a zoogeographic overlapping with the shallower species' assemblages of the shelf. At a higher taxonomic level the polychaete fauna of the deep Sea of Japan does not seem to differ from that of other deep-sea regions world-wide. In depths below 2000 m about 30% polychaete species have wide distributional ranges.  相似文献   

9.
Greatly increased retention of flow in Nile River reservoirs was initiated in 1964, after completion of the Aswan High Dam, which induced important oceanographic changes in the Mediterranean Sea, including deep waters (below a depth of 150 m). Based on an analysis of data series starting in the 1940s/1950s, the giant red shrimp Aristaeomorpha foliacea has become locally extinct off of the Catalonian coasts (and elsewhere in the northwestern Mediterranean) at depths of 400–900 m, with a simultaneous and significant drop in the catches of red shrimp, Aristeus antennatus, in the second half of the 1960s. The extinction and sharp decline of deep-shrimp populations off Catalonian coast (at ca. 3200 km westwards from Nile Delta) followed the 1964 drop in Nile discharge with a delay of ca. 3–5 yrs (breakpoint analysis applied to data series). The breakpoints detected in the second half of 1960s both in Nile runoff and shrimps’ abundance were independent of climatic events in the study area (e.g. changes in NAO) and occurred before the increase in fishing effort off Catalonian coasts (breakpoint in 1973–1974). The Levantine Intermediate Water (LIW), inhabited by A. foliacea in the western Basin, had significant temperature (T) and salinity (S) increases in the 1950–1970 period, and Nile damming has contributed about 45% of the total S increase of Western Mediterranean deep-water masses from the 1960s to the late 1990s (Skliris and Lascaratos, 2004). This had to increase, for instance, LIW salinity at its formation site in the eastern Mediterranean. Nile damming was probably a triggering factor for the extinction/drop in abundance of deep-sea shrimp off Catalonian coasts.  相似文献   

10.
In 1995 and 2000, the radiocarbon ratio (Δ14C) of total dissolved inorganic carbon was measured in the Japan Sea where deep and bottom waters are formed within the sea itself. We found that (1) since 1979, the Δ14C in bottom water below about 2000-m depth in the western Japan Basin (WJB) had increased by about 30‰ by 1995, and (2) the bottom Δ14C in the WJB did not change between 1995 and 2000. The former finding was due to penetration of surface bomb-produced radiocarbon into the bottom water owing to bottom ventilation, whereas the latter was caused by stagnation of the bottom ventilation there. In the eastern Japan Basin (EJB), the bottom Δ14C also increased by about 30‰ between 1979 and 2002. Recent stagnation of the bottom ventilation in the EJB is also suggested from analyses of constant bomb-produced tritium between 1984 and 1999. The temporal variations of Δ14C, tritium, and dissolved oxygen in the bottom waters indicate that: (1) new bottom water is formed south of Vladivostok in the WJB only in severe winters; and (2) the new bottom water then follows the path of a cyclonic abyssal circulation of the Japan Sea, which results in the increases in dissolved oxygen and the transient tracers in the bottom waters in the EJB and Yamato Basin with an approximate 3-to 6-year time lag. This process is consistent with the spatial variations of Δ14C, bomb-produced 137Cs, and chlorofluorocarbon-11 in the bottom waters of the Japan Sea.  相似文献   

11.
The Japanese archipelago is surrounded by the Pacific to the east, the Okhotsk Sea to the north, the Sea of Japan to the west and the Okinawa Trough to the south. The last three seas form semi-isolated deep basins, all with potentially tectonic origin but a different primary energy source as well as hydrographic and faunistic history. The Okhotsk Sea is connected to the Pacific through the deep straits between the Kurile Islands. As a result much of the fauna has links with that fauna found at similar depths in the Pacific. By contrast, the Sea of Japan was isolated from the main Pacific during the last ice age and became anoxic. Even today the link is only through narrow shallow straits. As a result the fauna is impoverished and is believed to be composed of cold-adapted eurybathic species rather than true deep-sea species. The deep-water fauna of both these seas derive their energy from sinking surface primary production. The Okinawa Trough has a much younger tectonic history than the Okhotsk Sea or the Sea of Japan. In the Okinawa Trough the most noticeable fauna is associated with hydrothermal activity and chemosynthesis forms the base of the food chain for the bathyal community. The variable nature of these three basins offers excellent opportunities for comparative studies of species diversity, biomass and production in relation to their ambient environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
This is the first detailed study on the distribution of lead-210 in the Japan Sea water. The content of lead-210 ranged from 9.3±2.1 dph/l in the surface water to 3.4+-0.8 dph/l in the deep water—a quite low content as compared to that in the deep water of the North Pacific. Vertical profiles show that the content of lead-210 abruptly decreases below the seasonal thermocline (10–20 m in depth) and nearly uniform in the deep water. It is suggested that a significant amount of air-borne lead-210 deposited over the Japan Sea is transported along with the Tsushima Current to the open ocean. The budget of lead-210 is calculated by using a simple box-model and the mean residence time of lead-210 in the Japan Sea is estimated to be 15 yr.  相似文献   

13.
The rise of the waters of the main pycnocline in the central part of the western cyclonic gyre at the end of the winter in the 1960s–1970s and their deepening in the eastern cyclonic gyre from the mid-1960s to the late 1980s were revealed on the basis of archival hydrologic data obtained on the standard sections of the Black Sea in 1957–1992. It is shown that, simultaneously, the waters of the pycnocline descended in the Sevastopol anticyclone and rose in the Yalta and Batumi anticyclones. These tendencies indicate that the water circulation intensified in the region of the western cyclonic gyre (off the southwestern coast of the Crimea) and weakened in the vicinity of the eastern cyclonic gyre at the end of the winter season in the 1960s–1970s and in the 1960s–1980s, respectively. It is shown on the basis of NCEP reanalysis data and archival hydrometeorological data that all major circulation factors, such as a decrease in the cyclonic vorticity in the wind field during the winter season, changes in its spatial structure, an increase in the river discharge, and a decrease in the turbulent heat fluxes at the Black Sea surface, affect the energy redistribution between the gyres. The role of each of these factors is analyzed.  相似文献   

14.
南沙海槽是古南海俯冲消亡、南沙地块与婆罗洲碰撞的关键区域, 其构造演化史记录了南海前世今生的重要信息。为深入认识对其构造变形有重要影响的南沙海槽深部热状态, 本文首先利用热传输方程分析了滑坡体快速堆积的热披覆效应对海槽底部深水区海底观测热流的影响, 然后利用磁异常的频谱分析技术获取南沙海槽及其邻区的居里面深度。结果表明, 受沉积物快速堆积的影响, 南沙海槽底部深水区文莱滑坡范围内现今海底热流测量值仅为深部背景热流的60%~77%, 推测该区深部背景热流约为77~98mW·m-2; 南沙海槽内居里面深度一般小于16km, 比位于其北侧的南沙岛礁区居里面深度(18~24km)小。现今南沙海槽区深部具有较高的背景热流, 该区较高的热状态与其地壳强烈减薄特征对应, 是华南陆缘裂陷和南海形成演化的结果。  相似文献   

15.
Wyville Thomson Ridge Overflow Water (WTOW), which is the only part of the outflow from the Norwegian Sea not to directly enter the Iceland Basin, is shown to be a significant water mass in the northern Rockall Trough. It is found primarily at intermediate depths (600–1200 m) beneath the northward flowing warm Atlantic waters, and above recirculating Mediterranean influenced waters and Labrador Sea Water (LSW). The bottom of the WTOW layer can be identified by a mid-depth inflexion point in potential temperature–salinity plots. An analysis of historical data reveals that WTOW has been present in all but eight of the last 31 years at 57.5°N in the Rockall Trough. A denser component of WTOW below 1500 m has also been present, although it appears to be less persistent (12 out of the 31 years) and limited to the west of the section. The signature of intermediate WTOW was absent in two periods, the mid-1980s and early 1990s, both of which coincided with a freshening, and probable increase in volume, of LSW in the trough. Potential temperature–salinity diagrams from historical observations indicate that WTOW persists at least as far south as 55°N (and as far west as 20°W in the Iceland Basin) although its signature is quickly lost on leaving the Rockall Trough. We suggest that a transport of WTOW down the western side of the trough exists, with WTOW at intermediate depths entering the eastern trough either via a cyclonic recirculation, or as a result of eddy activity. Further, WTOW is seen on the Rockall–Hatton Plateau and in the deep channels connecting with the Iceland Basin, suggesting additional possible WTOW transport pathways. These suggested transport routes remain to be confirmed by further observational or modelling studies.  相似文献   

16.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

17.
Recent decadal salinity changes in the Greenland-Scotland overflow-derived deep waters are quantified using CTD data from repeated hydrographic sections in the Irminger Sea. The Denmark Strait Overflow Water salinity record shows the absence of any net change over the 1980s–2000s; changes in the Iceland–Scotland Overflow Water (ISOW) and in the deep water column (σ0 > 27.82), enclosing both overflows, show a distinct freshening reversal in the early 2000s. The observed freshening reversal is a lagged consequence of the persistent ISOW salinification that occurred upstream, in the Iceland Basin, after 1996 in response to salinification of the northeast Atlantic waters entrained into the overflow. The entrainment salinity increase is explained by the earlier documented North Atlantic Oscillation (NAO)-induced contraction of the subpolar gyre and corresponding northwestward advance of subtropical waters that followed the NAO decline in the mid-1990s and continued through the mid-2000s. Remarkably, the ISOW freshening reversal is not associated with changes in the overflow water salinity. This suggests that changes in the NAO-dependent relative contributions of subpolar and subtropical waters to the entrainment south of the Iceland–Scotland Ridge may dominate over changes in the Nordic Seas freshwater balance with respect to their effect on the ISOW salinity.  相似文献   

18.
We have collected fifty-five seawater samples at seven stations at various depths in the Yamato and Japan Basins of the Japan Sea and measured their helium isotopic ratios. The 3He/4He ratios vary from 0.997 Ratm to 1.085 Ratm where Ratm is the atmospheric ratio. The maximum 3He excesses about 8%, are observed at mid-depth (1000 m), and these values are significantly lower than those observed in deep Pacific waters. This implies that mantle-derived helium in deep Pacific water cannot enter the Japan Sea since it is an almost landlocked marginal sea. The observed 8% excess 3He may be attributable to the decay product of tritium. Slightly higher 3He/4He ratios in the Bottom Water were observed in the Yamato Basin than in the Japan Basin. The ventilation ages of seawater shallower than 1000 m are calculated as about 5 to 20 years, which is consistent with the CFC ages reported in the literature. There is a positive correlation between the apparent oxygen utilization and 3H-3He ages. The estimated oxygen utilization rate from the correlation in a layer between 500 m and 1000 m is about 3 μmol/kg/yr, which is similar to that in the eastern subtropical North Atlantic.  相似文献   

19.
Hydrographic changes in the Labrador Sea, 1960–2005   总被引:1,自引:0,他引:1  
The Labrador Sea has exhibited significant temperature and salinity variations over the past five decades. The whole basin was extremely warm and salty between the mid-1960s and early 1970s, and fresh and cold between the late 1980s and mid-1990s. The full column salinity change observed between these periods is equivalent to mixing a 6 m thick freshwater layer into the water column of the early 1970s. The freshening and cooling trends reversed in 1994 starting a new phase of heat and salt accumulation in the Labrador Sea sustained throughout the subsequent years. It took only a decade for the whole water column to lose most of its excessive freshwater, reinstate stratification and accumulate enough salt and heat to approach its record high salt and heat contents observed between the late 1960s and the early 1970s. If the recent tendencies persist, the basin’s storages of salt and heat will fairly soon, likely by 2008, exceed their historic highs.The main process responsible for the net cooling and freshening of the Labrador Sea between 1987 and 1994 was deep winter convection, which during this period progressively developed to its record depths. It was caused by the recurrence of severe winters during these years and in its turn produced the deepest, densest and most voluminous Labrador Sea Water (LSW1987–1994) ever observed. The estimated annual production of this water during the period of 1987–1994 is equivalent to the average volume flux of about 4.5 Sv with some individual annual rates exceeding 7.0 Sv. Once winter convection had lost its strength in the winter of 1994–1995, the deep LSW1987–1994 layer lost “communication” with the mixed layer above, consequently losing its volume, while gaining heat and salt from the intermediate waters outside the Labrador Sea.While the 1000–2000 m layer was steadily becoming warmer and saltier between 1994 and 2005, the upper 1000 m layer experienced another episode of cooling caused by an abrupt increase in the air-sea heat fluxes in the winter of 1999–2000. This change in the atmospheric forcing resulted in fairly intense convective mixing sufficient to produce a new prominent LSW class (LSW2000) penetrating deeper than 1300 m. This layer was steadily sinking or deepening over the years following its production and is presently overlain by even warmer and apparently less dense water mass, implying that LSW2000 is likely to follow the fate of its deeper precursor, LSW1987–1994. The increasing stratification of the intermediate layer implies intensification in the baroclinic component of the boundary currents around the mid-depth perimeter of the Labrador Sea.The near-bottom waters, originating from the Denmark Strait overflow, exhibit strong interannual variability featuring distinct short-term basin-scale events or pulses of anomalously cold and fresh water, separated by warm and salty overflow modifications. Regardless of their sign these anomalies pass through the abyss of the Labrador Sea, first appearing at the Greenland side and then, about a year later, at the Labrador side and in the central Labrador Basin.The Northeast Atlantic Deep Water (2500–3200 m), originating from the Iceland–Scotland Overflow Water, reached its historically freshest state in the 2000–2001 period and has been steadily becoming saltier since then. It is argued that LSW1987–1994 significantly contributed to the freshening, density decrease and volume loss experienced by this water mass between the late 1960s and the mid 1990s via the increased entrainment of freshening LSW, the hydrostatic adjustment to expanding LSW, or both.  相似文献   

20.
Several time series in the Norwegian Sea indicate an upper layer decrease in temperature and salinity since the 1960s. Time series from Weather Station “M”, from Russian surveys in the Norwegian Sea, from Icelandic standard sections, and from Scottish and Faroese observations in the Faroe–Shetland area have similar trends and show that most of the Norwegian Sea is affected. The reason is mainly increased freshwater supply from the East Icelandic Current. As a result, temperature and salinity in some of the time series were lower in 1996 than during the Great Salinity Anomaly in the 1970s. There is evidence of strong wind forcing, as the NAO winter index is highly correlated with the lateral extent of the Norwegian Atlantic Current. Circulation of Atlantic water into the western Norwegian and Greenland basins seems to be reduced while circulation of upper layer Arctic and Polar water into the Norwegian Sea has increased. The water-mass structure is further affected in a much wider sense by reduced deep-water formation and enhanced formation of Arctic intermediate waters. A temperature rise in the narrowing Norwegian Atlantic Current is strongest in the north.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号