首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esin Sipahi 《New Astronomy》2012,17(4):383-387
New multi-colour UBVR light curves of the eclipsing binary KR Cyg were obtained in 2005. Photometric solutions were derived using the Wilson-Devinney method. The result shows that KR Cyg is a near-contact binary system with a large effective temperature difference between the components, approximately 5230 K. All the times of minimum light were collected and combined with our observations obtained in 2010 and 2011. Analysing all the times of mid-eclipse, we found for the first time a possible periodic oscillation with an amplitude of 0.001 days and a period of ∼76 years. The periodic oscillation could be explained by the light-time effect due to a presumed third component.  相似文献   

2.
2D numerical simulations of magnetorotational (MR) supernova mechanism are described. It is shown that magnetic field is amplified due to the differential rotation after core collapse. When magnetic pressure reaches some level, a compression wave starts to move outwards. Moving along steeply decreasing density profile the compression wave transforms quickly into fast MHD shock. The magnetorotational instability (MRI) was found in our simulations. MRI leads to the exponential growth of the components of the magnetic field. The MRI significantly reduces MR supernova explosion time. Configuration of the initial magnetic field qualitatively defines the shape of MR supernova explosion. For the quadrupole-like initial poloidal field the MR supernova explosion develops mainly along equatorial plane, the dipole-like initial field results in MR supernova developing as mildly collimated jet along axis of rotation. The explosion energy of MR supernova found in our simulations is ∼0.5–0.6×1051 erg.  相似文献   

3.
The dynamics of compact binaries is very complicated because of spin-orbit coupling and spin-spin coupling. With Laskar's frequency map analysis (FMA) and frequency diffusion as an indicator, we found that misalignment of the spins and orbital angular momentum has a great effect on the dynamics, and for systems with different mass ratiosβ= m2/m1 chaos occurs at different spin-orbit configurations. For equal-mass binaries (β= 1), chaos occurs when the spins nearly cancel each other out. For some other systems (for exampleβ~ 1/2), the binaries are irregular, even chaotic, when the spins are perpendicular to the orbital angular momentum. For the case where gravitational radiation is taken into account, we give an analytic estimation for the frequency diffusion based on the decay of the orbit, which is roughly consistent with our simulations. This means the FMA is not suitable as a chaos indicator for weak chaotic cases with dissipative terms.  相似文献   

4.
We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z , age log(t)=8.95, distance modulus (m - M)0 = 10.34 and reddening value E(B -V) = 0.55 mag.  相似文献   

5.
We present photometric and spectroscopic observations of the eclipsing binary system BI CVn. Wilson–Devinney analysis of its light and radial velocity curves showed that the system is a W-subtype overcontact W-UMa type binary. We computed the absolute physical parameters of the system based on a mass ratio spectroscopically determined in this study. Though the orbital period had changed somehow in the past, it has remained constant for a long time since March 1999, contradicting the previous interpretations suggesting a cyclic variation superimposed on a quadratic change.  相似文献   

6.
A wide-field time-series CCD photometric survey of variable stars in the field of the open cluster NGC 2168 was carried out using the BATC Schmidt telescope. In total 13 new variable stars are discovered with three W UMa systems, one EA type and two EB type eclipsing binaries (one of them could be a W UMa system), and seven pulsating stars including three candidates of δScuti stars.  相似文献   

7.
本文利用最新的K型星视向速度资料,对太阳附近K型星运动学进行了研究,平均太阳运动的解算值是(u_0,v_0,w_0)=(-9.1±2.2,-20.4±2.6,-5.2±2.5)km/s,与早期一些研究结果的符合程度是令人满意的。按不同年龄组进行分析的结果表明,作为本地静止标准基础的年轻恒星可能存在着某种方向朝外的大尺度运动,另外,我们发现了近距K型星的平均太阳运动与Gould带的运动学状态有着某种表观上的一致性。  相似文献   

8.
Summary. Substantial progress in the field of the Local Interstellar Medium has been largely due to recent launches of space missions, mostly in the UV and X–ray domains, but also to ground-based observations, mainly in high resolution spectroscopy. However, a clear gap seems to remain between the wealth of new data and the theoretical understanding. This paper gives an overview of some observational aspects, with no attempt of completeness or doing justice to all the people involved in the field. As progress rarely evolves in straight paths, we can expect that our present picture of the solar system surroundings is not definitive. Received 30 October 1998  相似文献   

9.
Summary. At a distance of 3.4 Mpc, NGC 5128 (Centaurus A) is by far the nearest active radio galaxy. It is often considered to be the prototype Fanaroff-Riley Class I ‘low-luminosity’ radio galaxy, and as such it plays an important role in our understanding of a major class of active galaxies. Its proximity has spawned numerous detailed investigations of its properties, yielding unrivalled but still incomplete knowledge of its structure and dynamics. The massive elliptical host galaxy is moderately triaxial and contains a thin, strongly warped disk rich in dust, atomic and molecular gas and luminous young stars. Its globular cluster ensemble has a bimodal distribution of metallicities. Deep optical images reveal faint major axis extensions as well as a system of filaments and shells. These and other characteristics are generally regarded as strong evidence that NGC 5128 has experienced a major merging events at least once in its past. The galaxy has a very compact, subparsec nucleus exhibiting noticeable intensity variations at radio and X-ray wavelengths, probably powered by accretion events. The central object may be a black hole of moderate mass. Towards the nucleus, rich absorption spectra of atomic hydrogen and various molecular species suggest the presence of significant amounts of material falling into the nucleus, presumably ‘feeding the monster’. Emanating from the nucleus are linear radio/X-ray jets, becoming subrelativistic at a few parsec from the nucleus. At about 5 kpc from the nucleus, the jets expand into plumes. Huge radio lobes extend beyond the plumes out to to 250 kpc. A compact circumnuclear disk with a central cavity surrounds the nucleus. Its plane, although at an angle to the minor axis of the galaxy, is perpendicular to the inner jets. The jet-collimating mechanism, probably connected to the circumnuclear disk, appears to precess on timescales of order a few times 10 years. This review summarizes the present state of knowledge of NGC 5128 and its associated radio source Centaurus A. Underlying physical processes are outside its scope: they are briefly referred to, but not discussed. Received 30 December 1997  相似文献   

10.
11.
The Parkes–MIT–NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz (λ=6 cm). We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to δ=−65°) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to δ=+64°) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the currently 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. Direct comparison of our new fluxes with independent literature values gives excellent overall agreement. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5 to 9 Jy, a slight decline and a further flat distribution from 9 to 20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious ΣD (radio surface brightness–SNRs diameter) relation to determine a new power law index for a sub-sample of shell type SNRs which yields β=−2.2±0.6. This new evaluation of the ΣD relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7–11 kpc with most restricted to ±100 pc Galactic scale height.  相似文献   

12.
We present the results of a time-series CCD photometric survey of variable stars in the field of the open cluster NGC 7789. In a field of about one degree centering on the cluster, a total of 28 new variable stars are discovered (14 W UMa systems, nine EA-type eclipsing binaries, one RR Lyr star, and four unclassified). In addition, we recovered 11 old variables previously discovered by other authors. Preliminary parameters are given for some of these variables.  相似文献   

13.
日冕物质抛射的理想MHD模型研究   总被引:3,自引:0,他引:3  
章振大  林隽 《天文学进展》1998,16(3):195-209
概括了日冕物质抛射的一些观测结果和它们与其它太阳活动现象的相关性。简要回顾了较早期日冕物质抛射的理论研究,着重介绍了最近研究得较多的理论机制,即能量储存机制,以及其中的磁通量绳突变模型与其它理论模型的MHD数值和解析研究以及相应的重要应用.  相似文献   

14.
The complex lightcurves make (51) Nemausa a good case for the study of general methods for pole determination. From six lightcurves the pole is determined to 20h24m; +53° (1950); the rotation is retrograde with period 7h.782936 ± 0h.000005. Presence of nongeometric scattering is proved by a significant 0.008 mag amplitude. Formulae and photometric elements are given for predictions of the shapes of lightcurves in future oppositions. The precision of the Fourier coefficients may be reduced below the present ±0.003 mag level by avoiding the systematic errors in the observations due to phase factor variations and discontinuities when changing comparison stars.  相似文献   

15.
在研究磁力线脚点缓慢运动引起的无力场的准静演化时,考虑等离子体运动对演化的影响是非常重要的。本文以基本的MHD方程为依据,给出一种二维无力场进行小扰动准静演化时求等离子体位移的方法,并对一个二维无力磁拱模型的脚点运动引起的无力场演化和等离子体运动进行了具体的研究。  相似文献   

16.
89 CCD frames of the asteroid Moskva (787) were obtained over six nights. Lightcurves have been acquired for each night. We suggest a possible composite lightcurve with a corresponding rotational period of 0.4 days. This is to the knowledge of the authors the first lightcurve of Moskva(787) to be published.  相似文献   

17.
Summary. The Seyfert galaxy NGC 4151 harbors in its nucleus the most intensively studied AGN (Active Galactic Nucleus). Among the brightest AGN (in apparent luminosity) it is the most widely variable and the variations of its ultraviolet and X-ray spectrum have been studied on time scales ranging from hours to decades. These observations have formed the basis of methods and models which have been found to generally apply to broad emission line AGN: the rich and complex relation between the X-ray and UV variations, the comptonization model of the X-ray spectrum from medium X-ray to -rays, the reverberation mapping, the stratification in velocity and physical conditions of the gas in the broad line region, and a method to estimate the black hole mass from emission line variability. The large barred spiral which hosts this nucleus has been extensively studied especially in the central region. Inflow of gas along the and possibly also the orbits have been detected, but since the accretion disk is not in the galactic plane (as evidenced by the significant angle separating the radio axis and the rotation axis of the galaxy) the incoming gas seen on kpcs scale must, as it flows further inward, move out of the galactic plane, along trajectories which are entirely unknown. There is more to learn on NGC 4151. In fact, the best is yet to come. Three avenues of investigation appear particularly promising: 1) The variations in flux and spectral shape of the X-ray continuum and its relationship with the UV variations are the key to understanding the specifics of the Comptonization model. Progress on this point will come from repeated simultaneous observations of the UV spectrum and of the entire X-ray and -ray spectrum. This will also give insights on the structure of the disk in the last stable orbits, the formation and structure of the corona and in the end, the process of energy production. Exciting results on these topics are expected in the near future from Chandra-AXAF, XMM and INTEGRAL. The Chandra and XMM (which have short energy range) main contributions will, however, be line diagnostics and for Chandra, imaging of the soft diffuse emission. 2) The search for the gas inflow which merges into and/or forms the torus could finally be successful. Several powerful approaches are possible: observing molecular lines in emission with millimeter arrays of increasing baseline and collecting area; using the nuclear radio structure as background source to observe free-free and atomic or molecular lines in absorption. 3) The observations of NGC 4151 during a state of deep minimum will provide a unique oportunity to observe the X-ray spectrum of a Seyfert 1 nucleus at epochs of very low accretion rate, to identify the nature of the narrow variable lines, to determine the stellar population of a currently active nucleus, and measure the mass of the black hole from the stellar lines. NGC 4151 at minimum states should be a target of opportunity for all space missions. In addition, observations on time scales of 10 years or more, especially following a deep minimum, will allow one to map emitting regions of size up to 1pc, thereby overlapping with the linear scale directly mapped with large radio telescopes. Received 30 October 1999 / Published online: 24 March 2000  相似文献   

18.
本文研究了1981年5月16日质子耀斑中环弧系内的物质运动,环的形状大小以及在耀斑发展过程中双带走向和形状变化。结果表明:H_α环的一对足点都位于H_α亮带的内侧;在H_α环中环体两侧的物质都处于下落状态;在日面上看到的H_α亮环可能是亮带内边缘迅速膨胀的结果;耀斑前暗条最初不稳定的位置正是环弧系中环与纵向磁场中性线剪切最大的位置,也正是环面与太阳表面倾斜最大的地方;耀斑初始亮带走向与后期亮带的走向有一明显的交角,这可能是新磁流在日冕下层影响磁中性线走向的结果,并可能是该耀斑能量的一个重要的来源。  相似文献   

19.
Summary. This paper reviews the physical state of stars and Interstellar Matter in the Galactic Bulge (radius kpc from the dynamical center of the Galaxy), in the Nuclear Bulge (kpc) and in the Sgr A Radio and GMC Complex, i.e. the central \,pc of our Galaxy. The Galactic Bulge is devoid of cold Interstellar Matter and consists mainly of old stars, while the Nuclear Bulge accounts for of the mass of all of the Interstellar Matter in the Galaxy. A similar ratio holds for the formation rate of medium and high mass stars in Bulge and Disk. The metal abundance of the Interstellar Matter in the Galactic Bulge is found to be . The H-to-CO conversion factors to be applied to molecular gas in the Central Region are by factors 3 (Arimoto et al. 1996) to 10 (Sodroski et al. 1995) lower than in the solar vicinity. Hence, most H masses derived for the Central Region appear to be considerably overestimated. The Nuclear Bulge is pervaded by a thermal plasma (K) which is responsible for the diffuse free-free emission. Lyman continuum photon and dust IR luminosity of the Nuclear Bulge again account for of the respective total luminosities of the Galaxy. Magnetic fields in the Nuclear Bulge are strong (up to mG) as compared with the Galactic Disk (a few tens of G). The field lines are oriented parallel to the galactic plane inside giant molecular clouds and perpendicular to the plane in the intercloud medium. The compact source Sgr A* is close to or at the dynamical center of the Galaxy. Its radio spectrum with a high frequency cut-off at GHz, a low frequency turnover at GHz and a flux density dependence in between can be explained by synchrotron emission from quasi-monoenergetic relativistic electrons. Due to an extinction between Sun and Galactic Center corresponding to , an intrinsic weakness of this source in the near infrared, and a strong background emission from warm dust there are only upper limits available for the flux density of Sgr A* in the far, mid and near infrared and X-ray regime. The size of Sgr A* in the radio regime is cm, its dereddened K-band flux density is mJy, its luminosity has upper limits of (if radiation comes from an Accretion Disk) and (if black-body radiation from an object with a single temperature of K is assumed). If anyone of the soft X-ray sources detected by ROSAT actually coincides with Sgr A*, its X-ray luminosity would be less than a few . With a dark mass of Sgr A* is the best candidate for a starving black hole, although there are no observational indications for the presence of a (Standard) Accretion Disk. While the radio/IR spectrum of Sgr A* is purely nonthermal, the spectrum integrated over the central parsec resembles that of a Seyfert galaxy. Sgr A* is embedded in the Hii region Sgr A West with part of the ionized gas forming a minispiral. Sgr A West is surrounded by the Circum Nuclear Disk, an irregular shaped assembly of molecular gas which extends from pc and rotates around the Galactic Center with an estimated dynamical time scale of \,yr. The total luminosity of of the central parsec is due to the radiation of early-type stars of which have now been directly identified as luminous blue supergiants. It is still debated, however, if these stars can also account for all of the ionization of Sgr A West. In addition, the central parsec contains red giants, AGB stars, and a few super giants of which the brightest are now identified by direct imaging. These stars – together with a few million low mass main sequence stars – account for the bulk of the 2.2\,m emission. The spatial distributions of the three stellar populations in the central pc are remarkably different. Sgr A* is – along the line-of-sight – presumably located close to the center of the Hii region Sgr A West, which in turn is located in front of the extended (pc) synchrotron source Sgr A East, which appears to be the remnant of a gigantic explosion (of the order of the energy of a single supernova explosion) which took place yr ago inside the GMC Sgr A East Core. X-ray observations show within pc a pervasive hot (keV) plasma of expansion age of yr. Both phenomena – as well as the formation of the Circum Nuclear Disk – may have the same origin. Influx of material is observed within the Nuclear Bulge on all distance scales. In the Nuclear Bulge (pc) as well as in the Circum Nuclear Disk (pc) inflow towards the Galactic Center occurs primarily in the galactic plane and amounts to a few . The accretion rate into the central Black Hole, deduced from the luminosity of Sgr A*, however, appears to be lower by at least five orders of magnitude (assuming standard disk accretion). But in an equilibrium state only part of the infalling mass which is not accreted by the Black Hole can be consumed by star formation. A mass inflow rate varying with time is a more natural explanation. Comparing the physical state of the Center of our Galaxy with that of Active Galactic Nuclei derived from observations and modelling, we find that most of the basic characteristics of an AGN are also present in the Galactic Center. Lacking are, however, both the evidence for a standard Accretion Disk and a hard UV spectrum with accompanying high excitation emission lines in the Galactic Center which are characteristic for AGN. The luminosity of the central parsec, , amounts to only of the total luminosity of the Galaxy of . Seen from a distance of M31 (kpc) with an angular resolution of (corresponding to a linear size of pc) the Center of our Galaxy would appear as a mildly active nucleus with some starburst activity and would probably be classified as a weak Seyfert galaxy. The synchrotron spectrum of Sgr A*, however, would be completely masked by reprocessed stellar light (i.e. free-free and dust emission). Received: October 21, 1996  相似文献   

20.
The first cosmic mirage was discovered approximately 20 years ago as the double optical counterpart of a radio source. This phenomenon had been predicted some 70 years earlier as a consequence of General Relativity. We present here a summary of what we have learnt since. The applications are so numerous that we had to concentrate on a few selected aspects of this new field of research. This review is focused on strong gravitational lensing, i.e. the formation of multiple images, in QSO samples. It is intended to give the reader an up-to-date status of the observations and to present an overview of its most interesting potential applications in cosmology and astrophysics, as well as numerous important results achieved so far. The first section follows an intuitive approach to the basics of gravitational lensing and is developed in view of our interest in multiply imaged quasars. The astrophysical and cosmological applications of gravitational lensing are outlined in Sect. 2 and the most important results are presented in Sect. 5. Sections 3 and 4 are devoted to the observations. Finally, conclusions are summarized in the last section. We have tried to avoid duplication with existing (and excellent) introductions to the field of gravitational lensing. For this reason, we did not concentrate on the individual properties of specific lens models, as these are already well presented in Narayan and Bartelmann (1996) and on a more intuitive ground in Refsdal and Surdej (1994). Wambsganss (1998) proposes a broad view on gravitational lensing in astronomy; the reviews by Fort and Mellier (1994) and Hattori et al. (1999) deal with lensing by galaxy clusters; microlensing in the Galaxy and the local group is reviewed by Paczyński (1996) and a general panorama on weak lensing is given by Bartelmann and Schneider (1999) and Mellier (1999). The monograph on the theory of gravitational lensing by Schneider, Ehlers and Falco (1992) also remains a reference in the field. Received 4 April 2000 / Published online 9 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号