首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I examined a moderately active sunspot group, McMath 9735, and found that 15 of 16 flares observed in 1968, October 20–21 occurred near, and were preceded by, at least one of several EFR's (Emerging Flux Regions) in the area. Flares were larger and more numerous when: (1) the EFR appeared close to already existing spots, (2) a large amount of filament reorientation was occurring, and when (3) the EFR was most active, i.e., it was increasing in area and brightness and was accompanied by violent surging and great brightness fluctuations at the feet of the dark fibrils. Only two flares occurred at an inverted EFR, i.e., a leading spot with f polarity, however the largest event (2B) of the 15 quickly spread to this region after starting in a different EFR. A sunspot appeared in the inverted emerging flux region less than three hours after the flares. However this is thought to be merely an indication of the growing EFR and, therefore, a secondary effect.  相似文献   

2.
Super-active region NOAA 6555 was highly flare productive during the period March 21st–27th, 1991 of its disk passage. We have st udied its chromospheric activity using high spatial resolution Hα filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.  相似文献   

3.
Green  L.M.  Démoulin  P.  Mandrini  C.H.  Van Driel-Gesztelyi  L. 《Solar physics》2003,215(2):307-325
In order to understand whether major flares or coronal mass ejections (CMEs) can be related to changes in the longitudinal photospheric magnetic field, we study 4 young active regions during seven days of their disk passage. This time period precludes any biases which may be introduced in studies that look at the field evolution during the short-term flare or CME period only. Data from the Michelson Doppler Imager (MDI) with a time cadence of 96 min are used. Corrections are made to the data to account for area foreshortening and angle between line of sight and field direction, and also the underestimation of the flux densities. We make a systematic study of the evolution of the longitudinal magnetic field, and analyze flare and CME occurrence in the magnetic evolution. We find that the majority of CMEs and flares occur during or after new flux emergence. The flux in all four active regions is observed to have deviations from polarity balance both on the long term (solar rotation) and on the short term (few hours). The long-term imbalance is not due to linkage outside the active region; it is primarily related to the east–west distance from central meridian, with the sign of polarity closer to the limb dominating. The sequence of short-term imbalances are not closely linked to CMEs and flares and no permanent imbalance remains after them. We propose that both kinds of imbalance are due to the presence of a horizontal field component (parallel to the photospheric surface) in the emerging flux.  相似文献   

4.
All active regions are born as Emerging Flux Regions (EFRs) which appear in H as two small plages of opposite polarity connected by parallel dark arches. After a brief review of the properties of EFRs, we report on new observations of the birth of an EFR and apparent subsequent field reconnection. We review fluxrope theories, predict the appearance of EFRs, then modify this picture on the basis of high resolution observations. We arrive at a model of this phenomenon that encompasses relevant aspects such as the axial tilt of spot groups, the observed rotation of EFRs as they emerge, and the fact that EFR fluxtubes are made up of many discrete strands.We investigate the relation of the positions of emergence of EFRs to the chromospheric network. We find that new EFRs can be much smaller than supergranules.  相似文献   

5.
6.
We perform a statistical study of permanent changes in longitudinal fields associated with solar flares by tracking magnetic features. The YAFTA feature tracking algorithm is applied to GONG++ 1-minute magnetograms for 77 X-class and M-class flares to analyze the evolution and interaction of the magnetic features and to estimate the amount of canceled magnetic flux. We find that significantly more magnetic flux decreases than increases occurred during the flares, consistent with a model of collapsing loop structure for flares. Correlations between both total (unsigned) and net (signed) flux changes and the GOES peak X-ray flux are dominated by X-class flares at limb locations. The flux changes were accompanied in most cases by significant cancellation, most of which occurred during the flares. We find that the field strength and complexity near the polarity inversion line are approximately equally important in the flux cancellation processes that accompany the flares. We do not find a correlation between the flux cancellation events and the stepwise changes in the magnetic flux in the region.  相似文献   

7.
8.
Ruzmaikin  A. 《Solar physics》1998,181(1):1-12
We report observations of the large-scale spatial dependence of the Sun's luminosity variations over the period 1993–1995. The measurements were made using a new scanning disk solar photometer at Big Bear Solar Observatory, specially designed to measure large-scale brightness variations at the 10–4 level. Since the level of solar activity was very low for the entire observation period, the data show little solar cycle variation. However, the residual brightness signal I/I (after subtracting the mean, first, and second harmonics) does show a strong dependence on heliocentric angle, peaking near the limb. This is as one would expect if the residual brightness signal (including the excess brightness coming from the active latitudes) were primarily facular in origin. Additional data over the next few years, covering the period from solar minimum to maximum, should unambiguously reveal the large-scale spatial structure of the solar cycle luminosity variations.  相似文献   

9.
We present a new approach to the theory of large-scale solar eruptive phenomena such as coronal mass ejections and two-ribbon flares, in which twisted flux tubes play a crucial role. We show that it is possible to create a highly nonlinear three-dimensional force-free configuration consisting of a twisted magnetic flux rope representing the magnetic structure of a prominence (surrounded by an overlaying, almost potential, arcade) and exhibiting an S-shaped structure, as observed in soft X-ray sigmoid structures. We also show that this magnetic configuration cannot stay in equilibrium and that a considerable amount of magnetic energy is released during its disruption. Unlike most previous models, the amount of magnetic energy stored in the configuration prior to its disruption is so large that it may become comparable to the energy of the open field.  相似文献   

10.
All-sunspots from September 1986 to December 1992 in solar cycle 22 are used to investigate the characteristics of-sunspots and the relationship between-sunspots and X-class X-ray flares. The main results of this statistical study are as follows.
(1)  The earlier discoveries on the formation and disintegration patterns of-sunspots (Tang, 1983; Zirin and Liggett, 1987; Zirin, 1988) are confirmed. In a general sense, all-sunspots form from the penetration of two different dipoles. Delta-sunspots could be disintegrated byin situ flux cancellation. In addition, some-sunspots become separated by the sliding apart of opposite polarities.
(2)  A prominent characteristic of-sunspots is the imbalanced flux between the two polarities. A sample of 58-sunspots observed by the Solar Magnetic Field Telescope at Huairou, in which there are one or more X-class flares, maintains an average flux ratio of 6.6 between the majority and minority polarities. Unlike the early results of Tang (1983), two-third of them show a dominant flux from the preceding spots.
(3)  The number of-sunspots seems to be an index of solar activity. More than 95% of X-class X-ray flares take place in active regions of-sunspots; while 23% of-sunspots are generators of X-class X-ray flares. The productivity of X-class flares is closely correlated to the lifetime of-sunspots in this manner:P xxf = –0.12 + 0.02T Emphasis>/2 .
  相似文献   

11.
We study the temporal variation of subsurface flows of 788 active regions and 978 quiet regions. The vertical-velocity component used in this study is derived from the divergence of the measured horizontal flows using mass conservation. The horizontal flows cover a range of depths from the surface to about 16 Mm and are determined by analyzing about five years of GONG high-resolution Doppler data with ring-diagram analysis. We determine the change in unsigned magnetic flux during the disk passage of each active region using MDI magnetograms binned to the ring-diagram grid. We then sort the data by their flux change from decaying to emerging flux and divide the data into five subsets of equal size. The average vertical flows of the emerging-flux subset are systematically shifted toward upflows compared to the grand average values of the complete data set, whereas the average flows of the decaying-flux subset show comparably more pronounced downflows especially near 8 Mm. For flux emergence, upflows become stronger with time with increasing flux at depths greater than about 10 Mm. At layers shallower than about 4 Mm, the flows might start to change from downflows to upflows, when flux emerges, and then back to downflows after the active regions are established. The flows in the layers between these two depth ranges show no response to the emerging flux. In the case of decaying flux, the flows change from strong upflows to downflows at depths greater than about 10 Mm, whereas the flows do not change systematically at other depths. A cross-correlation analysis shows that the flows in the near-surface and the deeper layers might change about one day before flux emerges. The flows associated with the quiet regions fluctuate with time but do not show any systematic variation.  相似文献   

12.
Bernasconi  P.N.  Rust  D.M.  Georgoulis  M.K.  Labonte  B.J. 《Solar physics》2002,209(1):119-139
Solar Physics - On 25 January, 2000, we observed active region NOAA&;nbsp;8844 with the Flare Genesis Experiment (FGE), a balloon-borne observatory with an 80-cm solar telescope. FGE was...  相似文献   

13.
14.
We have observed several emerging flux regions (EFRs) using the Video Spectra-Spectro-Heliograph (VSSHG) at the San Fernando Observatory (SFO). The best studied region, NOAA 7968, was near disk center when it was observed on 5–8 June 1996. This EFR showed no organized upflow between the leader and follower spots over the 4-day period covered by our observations. The main concentrations of magnetic flux in the region (leader and follower) showed a slow separation as flux emerged, but little or no upflow was seen. Two other EFRs were observed for part of a single day each and one region was observed for only one sequence. For all regions observed, no discrete features were seen between the leader and follower polarity sunpots that had upflowing material as the regions grew. In all cases, the downward velocities were smaller in area than the magnetic parts of the regions. At times there were several localized areas of greater-amplitude downflows near sunspots.  相似文献   

15.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

16.
Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions (ARs) that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2–3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observ...  相似文献   

17.
We present a detailed investigation of the evolution of observed net vertical current using a time series of vector magnetograms of the active region(AR) NOAA11158 obtained from the Helioseismic and Magnetic Imager. We also discuss the relation of net current to the observed eruptive events. The AR evolved from the βγ toβγδ configuration over a period of six days. The AR had two sub-regions of activity with opposite chirality: one dominated by sunspot rotation producing a strong CME,and the other showing large shear motions producing a strong flare. The net current in each polarity over the CME producing sub-region increased to a maximum and then decreased when the sunspots were separated. The time profile of net current in this sub-region followed the time profile of the rotation rate of the south-polarity sunspot in the same sub-region. The net current in the flaring sub-region showed a sudden increase at the time of the strong flare and remained unchanged until the end of the observation, while the sunspots maintained their close proximity. The systematic evolution of the observed net current is seen to follow the time evolution of total length of strongly sheared polarity inversion lines in both of the sub-regions. The observed photospheric net current could be explained as an inevitable product of the emergence of a twisted flux rope, from a higher pressure confinement below the photosphere into the lower pressure environment of the photosphere.  相似文献   

18.
Yan  Yihua  Aschwanden  Markus J.  Wang  Shujuan  Deng  Yuanyong 《Solar physics》2001,204(1-2):27-40
The finite energy force-free magnetic fields of the active region NOAA 9077 on 14 July 2000 above the photosphere were reconstructed. We study the evolution of the 3D magnetic field structures in AR 9077 and compare the reconstructed field lines with TRACE EUV 171 Å flare loops during the flare maximum, which confirms the process that flaring loops extended from lower sheared level to higher arcades. We also demonstrate the 3D magnetic field evolution before the 3B/X5.7 flare on 14 July and the magnetic structure after the flare on 15 July. This shows that the helical magnetic structures were significantly changed, suggesting that the flux rope was indeed erupted during the energetic flare at 10:24 UT on 14 July.  相似文献   

19.
徐晓燕  方成  陈鹏飞 《天文学报》2007,48(2):181-189
观测研究表明有利于磁重联的新浮磁流与日冕物质抛射(CME)有密切关系.利用数值模拟的方法,新浮磁流触发CME的物理模型对观测结果进行了物理解释.基于这种模型,不考虑重力和热传导, 2.5维的数值模拟的理论结果显示:是否能够触发暗条爆发及CME,取决于新浮磁流磁通量的大小、浮现的位置以及其磁极走向,并给出了能够触发暗条爆发与不能触发爆发的参数空间.利用2002年和2003年的15个暗条爆发事例以及2002年的44个非爆发事例,对新浮磁流磁通量的大小、浮现的位置以及磁极走向进行了统计研究.结果表明并非所有的新浮磁流都能够使暗条失去平衡,形成CME.统计结果基本上支持了数值模拟的理论结果.这个结果可为空间天气预报研究提供有用的参考信息.  相似文献   

20.
We present the multiwavelength observations of a flux rope that was trying to erupt from NOAA AR 11045 and the associated M-class solar flare on 12 February 2010 using space-based and ground-based observations from TRACE, STEREO, SOHO/MDI, Hinode/XRT, and BBSO. While the flux rope was rising from the active region, an M1.1/2F class flare was triggered near one of its footpoints. We suggest that the flare triggering was due to the reconnection of a rising flux rope with the surrounding low-lying magnetic loops. The flux rope reached a projected height of ≈0.15R with a speed of ≈90 km s−1 while the soft X-ray flux enhanced gradually during its rise. The flux rope was suppressed by an overlying field, and the filled plasma moved towards the negative polarity field to the west of its activation site. We found the first observational evidence of the initial suppression of a flux rope due to a remnant filament visible both at chromospheric and coronal temperatures that evolved a couple of days earlier at the same location in the active region. SOHO/MDI magnetograms show the emergence of a bipole ≈12 h prior to the flare initiation. The emerged negative polarity moved towards the flux rope activation site, and flare triggering near the photospheric polarity inversion line (PIL) took place. The motion of the negative polarity region towards the PIL helped in the build-up of magnetic energy at the flare and flux rope activation site. This study provides unique observational evidence of a rising flux rope that failed to erupt due to a remnant filament and overlying magnetic field, as well as associated triggering of an M-class flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号