首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
文章主要通过电子探针、扫描电镜、激光拉曼光谱、透射电镜等微区微分析技术研究GRV 022115球粒陨石的基础矿物学特征和冲击变质矿物学特征,探讨陨石冲击熔融脉的形成机制和界定其母体的冲击条件。陨石主岩主要由橄榄石、辉石、熔长石、铁镍金属和硫化物等矿物组成。根据主岩的硅酸盐矿物学特征,确定GRV 022115是风化程度较低(W1) 的L6型普通球粒陨石,与前期分类结果一致。根据熔融脉内含有大量林伍德石的现象,修正GRV 022115陨石的冲击级别为S6,比原定的S5高一个级别。GRV 022115球粒陨石中有多条冲击熔融脉,熔融脉由基质和主岩碎块包裹体两类岩相组组成。熔融脉基质的主要组成是微米级粒状镁铁榴石与纳米级的含铁方镁石,是在平衡冲击压力下结晶的产物。冲击熔融脉主岩碎块包裹体中的橄榄石、低钙辉石、长石碎块已部分或全部转为相对应的高压相。橄榄石相变为林伍德石;个别低钙辉石相变为钙钛矿结构布里奇曼石微晶的集合体;长石主要相变为熔长石与玲根石。几乎所有的主岩碎块都有高温熔融的圆滑边界。熔融脉内外同类矿物的主量和微量元素具有一定的差异性,该差异性可以反映高温高压下混溶作用和扩散作用的影响。结合陨石冲击熔融脉形成机制和结晶模型,根据熔脉基质中镁铁榴石+方镁石矿物组合及静态高温高压实验相图,界定该陨石经受的冲击压力为23~27 GPa。  相似文献   

2.
The Suizhou meteorite is an L6 chondrite. This meteorite is consisted of olivine, low-Ca pyroxene, plagioclase, FeNi metal, troilite, whitlockite, chlorapatite, chromite and ilmenite. Olivine and pyroxene grains display shock-induced mosaic texture, and most plagioclase grains were melted and transformed to maskelynite. This meteorite contains a few very thin shock-produced melt veins ranging from 20 to 100 μm in width. They are chondritic in composition and contain abundant high-pressure minerals in two assemblages. One is the coarse-grained assemblage of ringwoodite, majorite, lingunite with minor amount of tuite, xieite, the CF-phase, akimotoite and amorphized perovskite, and the fine-grained assemblage (the melt vein matrix) composed of majorite-pyrope garnet, magnesiowüstite. FeNi metal and troilite in the Suizhou shock veins were molten and occur as small intergrowth grains or veinlets filling the interstices of garnet crystals or cracks in the vein matrix. It was revealed that olivine, pyroxene and plagioclase in the Suizhou shock veins have transformed in solid state to their high-pressure polymorphs ringwoodite, majorite, and lingunite, respectively, without change in their chemical compositions.  相似文献   

3.
A new high-pressure polymorph of merrillite with the structure of trigonal γ-Ca3(PO4)2 was found in the shock-produced veins of the Suizhou meteorite, where it coexists with ringwoodite, majorite, NaAlSi3O8-hollandite, and majorite-pyrope garnet. The crystallographic nature of this natural γ-Ca3(PO4)2 phase was characterized by Raman spectroscopy and X-ray diffraction, and all data compare favorably to the same data obtained from γ-Ca3(PO4)2 synthesized at 14 GPa and 1400°C. The cell parameters of this new high-pressure mineral are a = 5.258(1) angstroms and c = 18.727(3) angstroms, space group R-3m, and density = 3.447 (g/cm3), where the number in parentheses are standard deviations in the last significant digits. The natural occurrence of the γ-Ca3(PO4)2 phase together with other high-pressure minerals constrains the pressure of the shock veins at about 23 GPa. The Suizhou meteorite provides the first naturally occurring example of γ-Ca3(PO4)2 polymorph.  相似文献   

4.
Shock veins up to 1.1 mm thick were found within non-porous lithic clasts from suevite breccia of the Nördlinger Ries impact structure. These veins were studied by optical microscopy in transmitted and reflected light and by scanning electron microscopy. In shocked amphibolites, two types of Ca-rich majorite occur within and adjacent to the veins. The first type crystallized from shock-induced melts within the veins. Si contents of these majorites suggest dynamic pressure of ~15–17 GPa, implying minimum temperatures in the range of ~2,150–2,230°C. The second type of majorite was formed adjacent to the shock veins within pargasitic hornblende. This majorite contains significant amounts of H2O (0.7–0.9 wt%). Based on the textural setting, the shrinkage cracks and the chemical compositions of both phases, a solid-state mechanism is deduced for the hornblende to majorite phase transition. Both genetic types of Ca-rich majorite are described for the first time from a terrestrial impact crater. Along with stishovite, majorite constitutes the second silicate mineral displaying sixfold coordination of Si at Ries. Using micro-Raman spectroscopy, jadeite + coesite and jadeite + grossular were identified within local melt glasses of alkali feldspar and plagioclase composition, respectively. Stishovite aggregates, produced by solid-state reaction, along with shock-induced high-pressure melt glasses of almandine composition were also detected in shock veins of a garnet-cordierite-sillimanite restite. The quenched, homogeneous almandine glasses point to melting temperatures of more than ~2,500°C for the veins. Our findings demonstrate that terrestrial shock veins can give valuable information on shock-induced mineral transformations and transient high pressures of host rocks during a natural impact event.  相似文献   

5.
The partitioning of divalent (Co, Ni) and trivalent (Sc, Cr) trace elements between olivine, ortho- and clinopyroxene and spinel from spinel peridotite xenoliths has been investigated. These peridotites cover a wide range in modal composition from dunite to primitive lherzolites and have equilibrated in the upper mantle between >900° C and <1,200° C.The distribution of Co and Ni shows only minor variation through the whole sequence. In contrast, Sc partitioning between ortho- and clinopyroxene and olivine and clinopyroxene as well as Cr partitioning between olivine and clinopyroxene or olivine and orthopyroxene display high but systematic variations which can be assigned to dependences upon equilibration temperatues. Empirical temperature calibrations are given for Sc-orthopyroxene/clinopyroxene, Sc-olivine/clinopyroxene and Cr-olivine/clinopyroxene which, in principle, may permit to estimate equilibration temperatures not only for lherzolites or harzburgites but for orthopyroxene-free peridotites, too.Sc and Ni partition coefficients between spinel and mantle silicate minerals are primarily dependent upon the major element composition of spinel (e.g. Cr and Al) although a temperature dependence can still be identified. Probably such compositional effects are not observed for trace element partitioning between pyroxenes and olivine or ortho- and clinopyroxene only for the reason that in normal spinel peridotites these minerals show much less variation in major element composition than their coexisting spinels.  相似文献   

6.
7.
The enstatite-achondrite Khor Temiki has been studied by high-voltage electron microscopy. The normal Khor Temiki lithology has a fine-grained matrix in which individual grains show the well-known effects of unshielded solar irradiation. Intensity of deformation varies greatly from grain to grain; this material has a varied history of impact deformation, and must have formed in an environment similar to that of the lunar regolith. The meteorite is traversed by veins of extra-dark material. This was produced in situ from the normal lithology by intense shock, sufficient to erase its irradiation record almost completely. Instead of the enstatite that dominates the bulk meteorite, optically twinned clinoenstatite is found to be the major mineral in such a shock-vein. It is highly defective, and its electron diffraction patterns contain diffuse orthopyroxene maxima. It is interpreted in terms of inversion of protoenstatite produced by the thermal effect of the shock. Recrystallization phenomena, and the occurrence of enstatite in close association with the clinoenstatite, are described. This occurrence of twinned clinoenstatite is contrasted with those due to quenching of primary protopyroxene in small bodies such as chondrules. The effects of shock have eliminated porosity from the vein material, and indurated it. Less severe such effects, outside the veins themselves, must have contributed to the lithification of the meteorite.  相似文献   

8.
陈鸣 《地学前缘》2005,12(1):23-27
橄榄石高压多形林伍德石被认为是地幔过渡带的主要矿物。天然产状林伍德石主要在发生强烈冲击变质的球粒陨石冲击脉体中出现。目前还没有在地球岩石中发现林伍德石的报告。陨石冲击脉体的温度压力历史和矿物组合特征研究表明,林伍德石形成后,高压下淬火是使林伍德石不发生退变作用的重要条件。陨石中有利于林伍德石保存的淬火时间仅为数秒到十多秒。在地球上任何地质事件中,均难以实现在如此短的时问内使位于地幔过渡带的林伍德石被带往地球表层。寻找地球产状的林伍德石,关键是要在岩石和矿物中存在有利于林伍德石保存的条件,特别是当这些岩石和矿物仍处于高温的环境时。  相似文献   

9.
In order to better identify the mineral phase which controls the rheology of the transition zone (between 410 and 660 km depth) transmission electron microscopy observations were made on several coexisting spinel-garnet assemblies: alkremite xenolith; pyrope-rich – MgO:1.1Al2O3 spinel assembly deformed at 1173K, 800 MPa in a Griggs apparatus; (Mg,Fe)3(Al,Mg,Si)2Si3O12 majorite – (Mg,Fe)2SiO4 spinel assembly synthesized in a laser heated diamond anvil cell. It was found that garnet crystals systematically remain undeformed while spinel crystals are plastically deformed. These results are in accord with the assumption that the rheology of majorite is stronger than the rheology of spinel, in the conditions of the transition zone.  相似文献   

10.
Synthetic olivines, with composition Fa50, Fa75 and Fa100, have been transformed into spinel in a laser-heated diamond-cell at pressures from 70 to 200 kbar and at a luminance temperature of about 1,200° C. The electrical conductivity σ was measured, at room temperature and up to 200 kbar, on olivine (Lacam 1982; 1983) and spinel (present study). The data obtained permit the following conclusions:
  1. Sample nature effect: under the same conditions (composition, pressure), the σ of spinel is more than three orders of magnitude of the σ of olivine.
  2. Composition effect: there are more than three orders of magnitude between the values of σ for spinels derived from initial compositions of Fa50 and Fa100, respectively.
  3. Pressure effect: The P-effect on σ is greater for olivines than for spinels.
Besides, as in the case of olivine, in spinel the σ obeys an empirical Boltzmann relation: $$\log {\text{ }}\sigma = n \times x + S \times P + const$$ where the first and second term are the composition and pressure contributions, respectively; x the ratio Fa/Fo in mole percent. In spinel, the activation volume, in direct connection with S, was found to be in the order of 0.3 cm3/mol, about one half of that for olivine.  相似文献   

11.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

12.
In the North Bavarian Basement (FR Germany) as well as in the Thuringian Forest (GDR) both of which belonging to the Saxothuringian Zone antimony mineralizations have been worked up to the early fifties. Mineralogical and geological investigations led to the following classification of antimony ore deposits and -concentrations:
  1. Stratabound and stratiform fahlore (Fahlerz) mineralization in Silurian and Lower Devonian black shales.
  2. Sulphosalt- and stibnite-bearing veins (partly associated with native gold) in wall rocks of the Late Variscan granites.
  3. Monometallic and monomineralic antimony lodes along anticlinal structures.
  4. Sulphosalt-bearing lead-zinc veins.
Antimony in the black shales was concentrated during late diagenetic cementation along with copper. The sulpho-salt-bearing stibnite veins in the metamorphic country rocks of the granites are genetically associated with the granitic intrusions nearby. This is proved by trace element chemistry and structural as well as mineralogical features of those veins. U/Pb age dating of contemporaneous pitchblende from the »polymetallic uranium paragenesis« from Hoehensteinweg uranium deposit yielded a late Variscan age of formation for these veins of type 2. Early Paleozoic rocks (metavolcanics) are suggested to have been the parent material for these granite-related Sb concentrations. However the monotonous Sb veins are more akin to the basic protore in deeper crustal sections. The thermal aureole of a deep-seated heat source is preserved by the Ag/Sb ratio of galena in Pb-Zn veins (type 4), which shows a marked variation along the SW plunging Berga Anticline from increased Ag/Sb ratios near the core of the anticline towards reduced values in mining sites more peripheral to this fold structure. Pb isotopes of stibnite as well as Pb sulphides point to a crustal derivation of both elements. An in-situ re-deposition and leaching of Sb from the wall rocks as well as antimoniferous black shales may be ruled out. It has to be emphasized that intra-crustal mass movements (A subduction) and the late Vanscan igneous activity are the major factors controling release of Sb from the Early Paleozoic low metal concentrations within metavolcanic rocks and subsequent discharge of Sb-bearing fluids within joints and fractures related to late Variscan tectonic movements. A schematic exploration concept is outlined.  相似文献   

13.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

14.
In Central Dronning Maud Land, East Antarctica, rare metre-sizedlenses of spinel peridotite are enclosed in high-grade metamorphicrocks. The rocks experienced a medium-P granulite-facies metamorphismat 575 Ma and a low-P amphibolite-facies overprint at 530 Ma.The latter is probably related to extensive granitoid magmatismbetween 530 and 500 Ma, which produced large volumes (abouthalf of the outcrops today) of granitic to syenitic rocks aswell as abundant K-feldspar–quartz pegmatites. One ofthe spinel peridotite lenses in the Schirmacher Oasis of CentralDronning Maud Land is crosscut by several small (up to 10 cmwide) veins with a characteristic zoned sequence of mineralassemblages, which was formed by reaction of a hydrous, SiO2-saturatedfluid or pegmatitic melt with the peridotite. The zoned sequenceconsists of the following mineral assemblages (from the centreof the vein towards the outer margin): zone 0, plagioclase +quartz; zone 1, green biotite intergrown with zircon + clinoamphibole;zone 2, cummingtonite + dark brown biotite intergrown with rutile+ clinoamphibole; zone 3, cummingtonite + light brown biotite+ spinel; zone 4, olivine + orthopyroxene + spinel ±clinopyroxene (unaltered peridotite). This sequence was investigatedwith respect to its conditions of formation, modal mineralogy,mineral chemistry, fluid inclusions, and oxygen and hydrogenisotope compositions of selected minerals. Based on the stabilityof cummingtonite and on equilibrium calculations in the MgO–SiO2–H2Osystem and on quartz–biotite oxygen isotope thermometry,the reaction vein formed at 650°C, which is in accord withtypical pegmatite crystallization temperatures. The pegmatiteof zone 0 is interpreted to have formed in an open fissure whereas,on textural grounds, zone 3 replaces former peridotite. On thebasis of mass balance constraints, the boundary between zones1 and 2 is interpreted to approximately represent the formerboundary between peridotite and the open fissure before reaction.Oxygen isotope systematics show that the infiltrating fluidhad an isotopic composition of 9–10 SMOW. All mineralsof the reaction vein with the exception of the inherited spineland olivine in the adjacent peridotite are in equilibrium withsuch a fluid. Spinel in the peridotite is depleted in 18O comparedwith coexisting olivine, which suggests isotopic disequilibrium.Spinel in zone 3 has a distinctly different isotopic compositioncompared with that in the peridotite, apparently approachingbut not reaching equilibrium. The combination of mineral chemistryand mass balance constraints of the modal mineralogy constrainsthe volume change during metasomatism and the direction of elementaldiffusion. It is indicated that Mg, Cr and Ni always diffusedtowards the vein, whereas Si, Al, K, Na, H2O and possibly Fediffused into the peridotite. KEY WORDS: peridotite; metasomatism; pegmatite; diffusion; reaction  相似文献   

15.
The very fine-grained (1 m) polygonal microcrystalline texture occurring in the groundmass of pseudotachylite veins in the Harris meta-anorthosite and its variation with position are described and an origin by crystallization from a melt at very large undercooling suggested. The intrusive nature of the veins is shown by their geometry and internal structures. Clasts, which are almost always only plagioclase, are generally concentrated towards the centres of veins. Flow of tens of millimetres can account for this concentration in millimetre-thick veins as a result of the Bagnold effect. The veins are generally thin (5 m to 5 mm or more), are frequently zoned and always contain transparent granules of high relief (probably Al-rich pyroxene) and opaque granules of magnetite up to a few micrometres in size. The granules are either uniformly distributed in microcrystalline textures or concentrated locally giving cellular textures. In some veins, spherulitic or bow-tie textures occur. The coarsest textures are found in the centres of the thickest veins. The groundmass of the pseudotachylite is never completely isotropic but consists of a mosaic of transparent plagioclase crystals decreasing in size from the centres of thick veins to less than 1 m in thin veins or in the margins of thicker veins. This fine microcrystalline texture was studied by both scanning and transmission electron microscopy and consists of polyhedral crystals of regular size in the range 0.2–1.5 m, which show little sign of deformation. The local composition of the pseudotachylites varies little from the average compositions of the rocks in optically homogeneous veins, the variation being within the compositional space defined by the minerals of the host rock. This shows that homogenization of the pseudotachylite has occurred. In cellular veinsdifferentiation has occurred as the compositions of the cell centres lie outside those of the minerals of the host rock. This was produced by segregation of the granules, pyroxene being absent from the host rock. The plagioclase in the pseudotachylite is more disordered than that in the host rock. All the microtextures described are absent from the associated cataclasites and cannot be due to recrystallization of a fine-grained and intensely strained rock powder. The physical state on and after intrusion was that of a melt and injection was followed by crystallization. The melt was produced by more or less total fusion of the host rock minerals at shallow depth by heat produced during local faulting and perhaps during crack propagation. The fine microcrystalline texture very closely resembles that produced during hypercooling of molten metals and alloys. It thus possibly formed not by devitrification but from a melt at much greater degrees of undercooling than the spherulitic and bow-tie textures.  相似文献   

16.
A network of 5 cm wide subplanar zones of garnet-granolite with accessory apatite as the dominant hydrous mineral, is overprinted on basic hornblende-granolites in an area of present and past tectonic uplift. Fracturing and the garnet forming reactions appear to be caused by destabilisation of hornblende, as a hydrous phase, through a critical drop in the PT ratio. Whereas the apatites from the hornblende-granolite have normal compositions, apatites from the garnet-granolite zones are among the most chlorine enriched hydroxyfluorapatites known. A later amphibolite facies event has depleted hydrous minerals of fluorine and chlorine, affecting hornblende more strongly than apatite. Based on literature data on F and Cl in coexisting minerals, original hornblende compositions are tentatively restored. It is then possible to derive all the chlorine of the garnet zone apatites from the original rock, with differential loss of H2O and HF over chlorine during the dehydration reaction. Diffusion coefficients would have been larger for H2O and HF than for the large chloride ion, and if the gas phase was in contact with even minor anatectic melts, activity gradients would also have been relatively small for chlorine. Low-Cl scapolite is present in quartz-free pegmatoid veins. Field evidence for a genetic tie between the garnet zones and these veins is inconclusive, but liberation of H2O and HF under granolite facies conditions is likely to have caused limited fusion of the plagioclase. Since many garnet zones do not contain even small pegmatoid veins, melts related to their formation could have collected in veins only after initial diffusion or infiltration over a distance, and without leaving segregated mafic residues.  相似文献   

17.
《Applied Geochemistry》1998,13(1):95-104
X-ray diffraction, scanning electron microscopy and O-isotope geochemistry have been used to investigate the origin and possible controls on polymorphic transformation of kaolin minerals filling veins in Cretaceous shales from the Gibraltar Strait area (southern Spain).The mineralogy of the enclosing shales indicates that kaolin minerals formed from smectite dissolution, a process that silmultaneously originated I/S mixed-layers and quartz. Kaolinite and dickite δ18O values suggest that an increase in the water isotopic composition, from Cretaceous sea water values (−1%) to values of about 3%, occurred parallel to smectite dissolution, the intensity of this process being the main factor controlling the isotopic composition of kaolin minerals. The minimum formation temperature ranges from 62°C for kaolinite to 86–96°C for dickite, indicating that the depth of burial was the main control on polymorph formation. This temperature range agrees with that deduced for illite/smectite ordering. The passage from kaolinite- to dickite-rich veins was accompanied, as deduced from SEM examination, by a morphologic evolution characterized by the division of large vermiculae, dominant in kaolinite samples, and the formation of short stacks and platy crystals, which are predominant in dickite. The mechanism of dickite formation, however, remains uncertain.  相似文献   

18.
The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such boiling leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.  相似文献   

19.
Disseminated cumulus chrome spinel in the lower-most olivine orthocumulates from the Western Laouni intrusion (Southern Hoggar, Algeria) contains inclusions of silicates enriched in Mg-Ti-Na and H2O, and Fe-Ti (Zr) rich oxides, occurring either as numerous micro-inclusions or as large solitary cavities. Regardless of the inclusion type, titanian pargasite (or kaersutite) and the sodium analog of phlogopite predominate over orthopyroxene (En86 to En92) and Na-rich plagioclase (An50Ab50 to An7Ab93). Oxide inclusions are magnesian ilmenite (up to 37 mol% MgTiO3), rutile, loveringite (Ca,REE-(Ti,Fe,Cr,Mg,Zr)21O38) and accessory magnesian pseudo-brookite (kennedyite); apatite, Fe-Ni-Cu sulfides and alteration products (saussurite, bastite) are also present. Apart from kennedyite, all minerals included in chrome spinel form larger intercumulus crystals in the host rock as well. The micro-inclusions were trapped as the consequence of chrome spinel dissolving against the intercumulus liquid, 150 to 300° C below its liquidus temperature. The solitary cavities are attributed to fluid-assisted solid-state recrystallization of chains of spinel crystals; the role of capillary fluids is demonstrated by both the hydrous nature of solid inclusions and a strong positive correlation between the amphibole content and the abundance of solid inclusions in the rock. Phlogopite locally showing similar optical orientation within and outside the inclusions indicates that spinel was still recrystallizing down to 950° C. In the temperature range 1100-900° C determined for the formation of inclusions, chrome spinel probably trapped various combinations of crystals, liquids and fluids, the respective quantities of which varied greatly over distances of few tens of micrometres in a single spinel. The volume ratio of solids to liquids or to fluids must have been low enough to permit magmatic or hydrothermal reactions, which are otherwise never possible for the larger intercumulus crystals. Hence, the lack of olivine and clinopyroxene as inclusions in spinel while abundant in the host rock suggests that, as trapped, they completely reacted with the residual liquid to form phlogopite and pargasite respectively. Likewise, plagioclase and phlogopite have been enriched in Na against hydrothermal fluids to form albite and Na-phlogopite in the mineral inclusions.  相似文献   

20.
At 21:45 hr (Beijing time) on Oct. 31, 1990 the Yanzhuang meteorite hit the ground at the Yanzhuang village, Wenyuan County, Guangdong Province. Several fragments, totalling 3.5 kg, were recovered during the field survey. This meteorite is a rare one of its kind due to its heavily shocked features and thick veins made up of black molten materials. Olivine and low-calcium pyroxene are compositionally homogeneous with Fa=18.59, Fs=16.35 and Wo=1.29. The chemical composition (total Fe=28.0%) and recrystallized texture of the chondritic mass show that the Yanzhuang is an H6 chondrite. The black molten materials occur in the form of blocks (up to 2×3×4 cm in size) and veins (0.1–15 mm in width), and contain a lot of rounded and elliptic FeNi-FeS blobs (up to 6–10 mm in length). The metal in these blobs exhibits distinct dendritic structure characteristic of rapid cooling. Unmolten and molten samples are very similar in chemical composition, fitting well with the average H-chondrites. Partial melting and FeNi/FeS-silicate separation have not been observed in the molten materials of the Yanzhuang. This project was financially supported by the Science Foundation of Guangdong Province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号