首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal and year-to-year variability in the intensity of the 557.7 nm line of atomic oxygen atmospheric emission and its dependence on solar activity in the 23rd solar cycle is considered. The experimental data of the 557.7 nm emission observations in Eastern Siberia obtained in 1997–2008 and the NRLMSIS-00 atmospheric model are used. For particular considered characteristics of the 557.7 nm emission, differences between the experimental data and model approximations for the 23rd solar cycle are noted. Possible causes of the discovered discrepancies are discussed.  相似文献   

2.
High latitude ion outflows mostly consist of upward streaming O+ and He+ emanating from the ionosphere. At heights above 1000 km, these flows consist of cold and hot components which resonantly scatter solar extreme ultraviolet (EUV) light, however, the ion populations respond differently to Doppler shifting resulting from the large relative velocities between the ions and the Sun. The possibility of optical detection of the Doppler effect on the scattering rate will be discussed for the O+ (83.4 nm) ions. We have contrasted the EUV solar resonance images of these outflows by simulations of the 30.4 nm He+ and 83.4 nm O+ emissions for both quiet and disturbed geomagnetic conditions. Input data for the 1000 km level has been obtained from the EICS instrument aboard the Dynamics Explorer satellite. Our results show emission rates of 50 and 56 milli-Rayleighs at 30.4 nm for quiet and disturbed conditions and 65 and 75 milli-Rayleighs at 83.4 nm for quiet and disturbed conditions, respectively, obtained for a polar orbiting satellite and viewing radially outward. We also find that an imager at an equatorial distance of 9 RE or more is in a favorable position for detecting ion outflows, particularly when the plasmapause is depressed in latitude. However, an occultation disk is necessary to obscure the bright plasmaspheric emissions.  相似文献   

3.
Present-day data on 14C and 10Be concentration in natural archives have been statistically analyzed. It has been established that it is difficult to extract information about solar activity variations on long (several Myr and longer) and, especially, short (to 30 years) time scales using radiocarbon data. It has been indicated that beryllium series bear reliable information about short-term, secular, and, probably, 1000-year variations in solar activity. Moreover, 10Be concentration in polar ice can also be used to study the internal dynamics of solar activity. It has been concluded that beryllium data are more promising than radiocarbon ones from the viewpoint of solar paleoastrophysics.  相似文献   

4.
The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSBUV data accurately represent the absolute solar UV irradiance between 200–405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170–400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.  相似文献   

5.
Measurements of both broadband and spectral UV radiation have been carried out at Lhasa (29°40′N, 91°08′E, 3648 m above sea level) on the Tibetan Plateau, using a moderate bandwidth filter instrument (NILUV) and a Fixed Imaging Compact Spectrometer (FICS). In this paper, the erythemal UV dose rates deduced from broadband measurements during the period from 1 July 1996 to 10 December 1997 are presented. The observed highest erythemal UV dose rate is 500 (or 458) mW/m2 in July 1996 (or 1997), and the corresponding daily erythemal UV dose can reach up to 7.60 (or 7.00) kJ/m2 and 9.18 (or 8.96) kJ/m2, respectively, for the monthly mean and the monthly maximum. Comparisons with the UV levels at other locations at similar latitudes show that both the monthly mean and monthly maximum erythemal UV doses at Lhasa can be higher by a factor of 1.3–1.5 than those at San Diego (32°05′N, 117°1′W) in summer (from May to August), and exceed the corresponding values at Perth (32°0′S, 115°8′E) in the southern hemisphere summer (from November to February) by a factor of 1.2–1.4. Comparisons of both the broadband measurements and spectral measurements with the outputs of a discrete ordinate method (DOM) radiative transfer model have also been conducted. The results from the comparisons of broadband measurements with model outputs show that a 15, 11 and 10% agreement may be achieved around solar noon (with solar zenith angle smaller than 60°), respectively, for global irradiances in the 305, 320 and 340 mm channels, whilst the corresponding agreements are about 8 and 4% for the erythemal UV dose rate and the 340–305 nm ratio, respectively. The comparisons of the measured spectral irradiance with model calculations indicate that large discrepancies may appear at wavelengths shorter than 310 nm and longer than 380 nm. However, a 10% agreement may be generally achieved in UVA for solar zenith angle lower than 55°C. The corresponding agreement is about 20 and 5%, respectively, for UVB and the erythemal UV dose rate.  相似文献   

6.
Summary The aim of this paper is to present the formulations which can be used in calculating reflection and transmission coefficients when the rigidity in the core is taken into consideration. The theoretical curves presented can be used as a guide for studies of the physical parameters of the core-mantle boundary. It is hoped that these curves may lead to a clarification of the great differences between observed data and theoretical calculations, when the geometrical spreading and attenuation are taken into account.The Thomson-Haskell matrix formulations are used to calculate the reflection and transmission coefficients for a multi-layered medium imbedded between two half-spaces representing the solid mantle and a rigid core. A rigid core is defined here as having a rigidity in the range 1010<<1011 cgs units. For five proposed models of the core-mantle boundary the rigidity in the core is varied and the results are compared with those for a liquid core.  相似文献   

7.
Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s−1 are calculated for temperature data series over the south of France (44°N), and on wind data series over Volgograd (49°N), respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.  相似文献   

8.
A large number of individual enstatite crystals of the gas-rich aubrites Khor Temiki, Staroe Pesyanoe and Bustee was analyzed for implanted helium and for steep gradient ion tracks in order to investigate the relation between solar flare irradiation and solar wind implantation with extreme local resolution. Irradiated and non-irradiated crystals coexist within the gas-rich phases of the aubrites investigated. Statistically in a given meteorite the proportion of crystals with implanted solar wind is similar to the proportion of solar flare irradiated crystals. It varies from aubrite to aubrite in the sequence of their bulk contents of trapped rare gases.For nine enstatites, tracks and rare gases were subsequently measured within the same crystal. The results support the intimate association of solar flare tracks and implanted He. The4He-surface concentrations of irradiated crystals vary between <5 × 10?7 and 10?4 cm3 STP/cm2.The absence of saturation effects together with the low degree of elemental gas fractionation indicates very short solar wind exposure times (< 100 yr) rather than strong diffusion losses. The evidence from tracks and rare gases can be understood in terms of an early simultaneous irradiation of aubritic crystals by solar wind and solar flare particles on top of a regolith-covered parent body.  相似文献   

9.
A summary of experiments and analyses concerning electromagnetic induction in the Moon and other extraterrestrial bodies is presented. Magnetic step-transient measurements made on the lunar dark side show the eddy current response to be the dominant induction mode of the Moon. Analysis of the poloidal field decay of the eddy currents has yielded a range of monotonic conductivity profiles for the lunar interior: the conductivity rises from 3·10?4 mho/m at a depth of 170 km to 10?2 mho/m at 1000 km depth. The static magnetization field induction has been measured and the whole-Moon relative magnetic permeability has been calculated to be μμ0 = 1.01 ± 0.06. The remanent magnetic fields, measured at Apollo landing sites, range from 3 to 327 γ. Simultaneous magnetometer and solar wind spectrometer measurements show that the 38-γ remanent field at the Apollo 12 site is compressed to 54 γ by a solar wind pressure increase of 7·10?8 dyn/cm2. The solar wind confines the induced lunar poloidal field; the field is compressed to the surface on the lunar subsolar side and extends out into a cylindrical cavity on the lunar antisolar side. This solar wind confinement is modeled in the laboratory by a magnetic dipole enclosed in a superconducting lead cylinder; results show that the induced poloidal field geometry is modified in a manner similar to that measured on the Moon. Induction concepts developed for the Moon are extended to estimate the electromagnetic response of other bodies in the solar system.  相似文献   

10.
The HOBr molecule is a potential reservoir of Br compounds in the atmosphere. In this work, the UV-visible spectrum of HOBr was measured over the range 242–400 nm. Its absorption consists of two maxima at 280 nm (max=2.7±0.4×10-19 cm2 molecules−1) and 355 nm (max=7.0±1.1×10-20 cm2 molecules−1), respectively, where the error is ±1. Atmospheric photolysis lifetime calculations for HOBr in the lower stratosphere have been made using the PHOTOGT model. The results show a strong dependence on the solar zenith angle (SZA) implying a longer lifetime at high latitudes and a relatively short lifetime at low latitudes for example 714 s (albedo of 25%, SZA of 20° and an altitude of 17 km), and 3226 s (albedo of 25%, SZA of 88° and an altitude of 17 km). The UV-visible absorption spectrum of Br2O, which is an intermediate in the preparation, used in this study and is together with H2O in equilibrium with HOBr, was measured from 205 to 450 nm. The spectrum shows a maximum at 315 nm (max=2.3±0.3×10-18 cm2 molecules−1) with a shoulder at 355 nm. From the results of the atmospheric lifetime calculations for Br2O, it is clear that this molecule has a short stratospheric lifetime and is not likely to have a large daytime concentration, for example, 20 s (albedo of 25%, SZA of 20° and an altitude of 17 km), and 83 s (albedo and 25%, SZA of 88° and an altitude of 17 km).  相似文献   

11.
Particulate emissions from Mt. Etna in the fine-size range below 100 nm were studied in June and September 1989. The aerosol particles were characterized by size, concentration and photoelectric activity. These quantities are sensitive to the physical and chemical properties of the magma. Concentrations varied from 104 to 107 cm-3. The size distributions peak below 20 nm (radius) and are very narrow. The particles are generated mainly by nucleation and condensation of magmatic volatiles in a strong temperature gradient. The photoelectric activity of these particles can indicate high magma levels and increased exsolution of volatiles. It is therefore related to the observed activity of the respective crater and may be helpful as a prediction tool when used in conjunction with other volcano-monitoring techniques.  相似文献   

12.
Data on the content of the 14C cosmogenic isotope in tree rings, which were obtained as a result of laboratory measurements, are often used when solar activity (SA) is reconstructed for previous epochs, in which direct observations are absent. However, these data contain information not only about SA variations but also about changes in the Earth climatic parameters, such as the global temperature and the CO2 content in the Earth’s atmosphere. The effect of these variations on the 14C isotope content in different natural reservoirs after the last glacial termination to the middle of the Holocene is considered. The global temperature and the CO2 content increased on this time interval. In this case the 14C absolute content in the atmosphere increased on this time interval, even though the 14С to 12С isotope concentration ratio (as described by the Δ14С parameter) decreased. These variations in the radiocarbon absolute content can be caused by its redistribution between natural reservoirs. It has been indicated that such a redistribution is possible only when the rate of carbon exchange between the ocean and atmosphere depends on temperature. The values of the corresponding temperature coefficient for the 17–10 ka BC time interval, which make it possible to describe the carbon redistribution between the ocean and atmosphere, have been obtained.  相似文献   

13.
Quasi-periodic variations in the power of incoherent scattered signals, caused by wave disturbances of the electron concentration in the ionosphere, are analyzed for the day of a partial solar eclipse and for a background day. The windowed and adaptive Fourier transforms and the wavelet transform are used for spectral analysis. The spectral parameters of the wave disturbances at altitudes of 100–500 km in the 10–120 min period range differed significantly on the day of the solar eclipse and on the background day. Variations in the spectrum began near the onset of the phase of maximum disk occultation and continued no less than 2 h. The amplitude of time variations N was 2 × 109–4 × 1010 m?3, and the relative amplitude was 0.10–0.15. Wave disturbances have been compared for five solar eclipses; the comparison shows a noticeable variation in the spectrum of the wave disturbances during these events.  相似文献   

14.
This paper surveys the history of the Earth's climate and deals with facts, techniques, and causes. A review of climatic history since the origin of the Earth demonstrates the changes and variability of our climate along different scales. These variations can probably be fully understood only when taking into account both external forcing and non-linear interactions between the components of the climatic system: atmosphere, oceans, cryosphere, lithosphere, and biosphere. At least, as far as boundary conditions and forcing are concerned for the 108 to 109 yr time scale, atmospheric composition, solar evolution, and tectonism have to be considered, while variations of the Earth's orbital elements, and subsequently of the insolation, best explain the glacial-interglacial occurrences during the Quaternary Period. For shorter time scales, volcanic dust, solar activity, sea surface temperatures, and atmosphere-ocean autovariations have to be taken into account. Furthermore, the man-made effects have now to be considered: atmospheric loading of dust and air pollution particles, changes in surface albedo, and mainly the increasing rise of atmospheric CO2 and other trace gases adding to a greenhouse effect.This man-made warming effect of future CO2 increase will probably emerge as a clearly recognizable trend against the background of natural climatic fluctuations by the end of this century. This carbon dioxide induced super-interglacial will be superimposed on the expected natural long-term cooling trend of the ice age chronology.  相似文献   

15.
The cooling of a magmatic intrusion is simulated by a simple model of a non-homogeneous earth, with thermal properties depending on temperature, in which heat transfer is assumed to take place by conduction only. The mathematical problem consists in solving a non-linear partial differential equation with continuity conditions on temperature and heat flux imposed at the contacts between different rocks. This has been done numerically by a finite difference method. The model is then adopted as “reality” against which a number of commonly used approximations are tested. It is found that the effect of latent heat liberation can be reasonably taken into account by attributing an effective initial temperature to the magma (errors within 20°C for t > 105 years, when the temperature of the magma is still as high as 600°C); the effective specific heat approximation does not work as well. The dependence of thermal conductivity and specific heat on temperature may be eliminated by maintaining the errors within 30°C for t < 5 × 105 years. The assumption that magma and country rocks have the same thermal properties allows an estimate of the temperature field in the host rocks with errors of 50°C at most. The assumption that all rocks have the same constant conductivity yields results that are far from “reality” (errors of 100–200°C even at shallow depth).  相似文献   

16.
If the Earth was formed by accumulation of rocky bodies in the presence of the gases of the primordial solar nebula, the Earth at this formation stage was surrounded by a massive primordial atmosphere (of about 1 × 1026 g) composed mainly of H2 and He. We suppose that the H2 and He escaped from the Earth, owing to the effects of strong solar wind and EUV radiation, in stages after the solar nebula itself dissipated into the outer space.The primordial atmosphere also contained the rare gases Ne, Ar, Kr and Xe whose amounts were much greater than those contained in the present Earth's atmosphere. Thus, we have studied in this paper the dissipation of these rare gases due to the drag effect of outflowing hydrogen molecules. By means of the two-component gas kinetic theory and under the assumption of spherically symmetric flow, we have found that the outflow velocity of each rare gas relative to that of hydrogen is expressed in terms of only two parameters — the rate of hydrogen mass flow across the spherical surface under consideration and the temperature at this surface. According to this result, the rare gases were dissipated below the levels of their contents in the present atmosphere, when the mass loss rate of hydrogen was much greater than 1 × 1017 g/yr throughout the stages where the atmospheric mass decreased from 1 × 1026 g to 4 × 1019 g.  相似文献   

17.
Understanding climate change is an active topic of research. Much of the observed increase in global surface temperature over the past 150 years occurred prior to the 1940s and after the 1980s. The main causes invoked are solar variability, changes in atmospheric greenhouse gas content or sulfur due to natural or anthropogenic action, or internal variability of the coupled ocean–atmosphere system. Magnetism has seldom been invoked, and evidence for connections between climate and magnetic field variations have received little attention. We review evidence for correlations which could suggest such (causal or non-causal) connections at various time scales (recent secular variation ∼ 10–100 yr, historical and archeomagnetic change ∼ 100–5000 yr, and excursions and reversals ∼ 103–106 yr), and attempt to suggest mechanisms. Evidence for correlations, which invoke Milankovic forcing in the core, either directly or through changes in ice distribution and moments of inertia of the Earth, is still tenuous. Correlation between decadal changes in amplitude of geomagnetic variations of external origin, solar irradiance and global temperature is stronger. It suggests that solar irradiance could have been a major forcing function of climate until the mid-1980s, when “anomalous” warming becomes apparent. The most intriguing feature may be the recently proposed archeomagnetic jerks, i.e. fairly abrupt (∼ 100 yr long) geomagnetic field variations found at irregular intervals over the past few millennia, using the archeological record from Europe to the Middle East. These seem to correlate with significant climatic events in the eastern North Atlantic region. A proposed mechanism involves variations in the geometry of the geomagnetic field (f.i. tilt of the dipole to lower latitudes), resulting in enhanced cosmic-ray induced nucleation of clouds. No forcing factor, be it changes in CO2 concentration in the atmosphere or changes in cosmic ray flux modulated by solar activity and geomagnetism, or possibly other factors, can at present be neglected or shown to be the overwhelming single driver of climate change in past centuries. Intensive data acquisition is required to further probe indications that the Earth's and Sun's magnetic fields may have significant bearing on climate change at certain time scales.  相似文献   

18.
The Apollo 12 mission brought back sections of the Surveyor 3 vehicle suitable for mass spectrometric studies of implanted solar wind and solar cosmic rays. Using this method, we have determined an average solar wind 4He flux of 6.1 × 106 ions/cm2 sec for the 31 months of exposure. We have also measured 4He/3He= 2700 ± 50;4He/20Ne= 410 ± 30;20Ne/22Ne= 13.5 ± 0.2;20Ne/36Ar= 24.5 ± 2.5; and 36Ar/38Ar= 5.41 ± 0.20. These measurements provide solar wind values averaged over considerably longer periods of time than the Apollo Solar Wind Composition experiments and suggest that the short term SWC measurements during a period of high solar activity may not be a reliable measure of average solar wind composition.  相似文献   

19.
A number of finite-element calculations of convection in a variable-viscosity fluid have been carried out to investigate the effects of non-Newtonian flow when rheology is also subject to a strong temperature and pressure influence. A variety of cases has been studied in the range of effective Rayleigh numbers between 104 and 106, including different modes of heating and a range of values for activation energy and activation volume. Power-law creep with a stress exponent of 3 turns out to lead to considerably different flow pattern and heat transfer properties than Newtonian rheology. In general, the effect is to reduce viscosity contrasts imposed by p,T dependence, which can lead in some circumstances to the mobilisation of otherwise stagnant regions within the cell. The properties of non-Newtonian flow can be closely imitated by a Newtonian fluid with a reduced value of the activation enthalpy bH* with b?0.3–0.5. It appears possible that non-Newtonian rheology plays a key role in determining the convective style in a planetary mantle.  相似文献   

20.
Height distribution of the stratospheric aerosol extinction coefficient was measured in the altitude range 10 to 20 km by a balloon-borne multi-color sunphotometer in May 1978. It is demonstrated that detailed structures of the distribution of stratospheric aerosol can be remotely measured by the solar occultation method as well as by lidar andin situ particle counter observations. In the aerosol layer appearing at 18 km altitude the extinction coefficient at 800–1000 nm wavelength reached to 3×10–7 m–1, which was reasonable compared with lidar observations. Wavelength dependence of the aerosol optical depth was crudely estimated to be proportional to –1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号