首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
莲花山铜矿床产于中生代火山盆地隆坳转换部位,是大兴安岭中段铜多金属成矿带上的重要矿床之一。根据野外观察与室内鉴定,将矿化过程从早到晚划分为4个阶段,分别为早期的黄铁矿-石英阶段、中期的石英-硫化物阶段、中晚期的多金属硫化物阶段与末期的石英-碳酸盐阶段。研究表明,流体包裹体类型有纯气相、纯液相、气液两相和含子晶多相包裹体,矿化早期4类包裹体均有发育,中、中晚与末期主要发育气液两相包裹体。从早到晚,均一温度分别为340~420℃、220~310℃、140~200℃、~130℃。早期含子晶包裹体w(NaCleq)为34.5%~48.9%,气液两相包裹体w(NaCleq)为3.85%~7.15%,中、中晚期包裹体w(NaCleq)变化于5.25%~8.54%之间,未测到末期的盐度。初步厘定早期中高温、高盐度、富CO2的氧化含矿流体"沸腾",CO2逸出,演化为中阶段中温、低盐度流体,pH值升高,黄铜矿、黄铁矿大量沉淀,中晚期大气降水开始混入,形成以方铅矿与闪锌矿为主的多金属硫化物,末期流体成分则接近于循环天水;进而确定该矿床是与次火山岩相关的浅成热液高硫化型铜矿床。  相似文献   

2.
阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化   总被引:2,自引:1,他引:2  
阿尔泰山南缘泥盆纪克兰火山-沉积盆地蕴藏有丰富的VMS锌铅铜多金属矿床。自晚泥盆世至早二叠世末, 阿尔泰山南缘为NE-SW向强烈挤压的构造环境, VMS矿石受到变形变质改造,脉状金铜矿化发育。金(铜)石英脉主要有2种产状:(1)白色-灰白色(硫化物)顺层石英脉(QI), 产于韧脆性剪切带发育地段,呈细脉状或透镜状产于绿泥片岩、黑云片岩中;(2)斜切黄铁矿化蚀变岩、层状铅锌矿和变质岩产状的黄铜矿-黄铁矿石英脉(QII),与晚期的脆性构造有关。金(铜)石英脉的流体包裹体发育,按室温下相态特征有3类。第I类为含子矿物的高盐度包裹体(L-V-S型),子晶为NaCl, 有时为KCl,包裹体呈孤立或无序分布,代表变质早期流体特征。一般NaCl子晶先消失(210~357℃),包裹体的最终均一温度369~512℃,其捕获温度与变质相的相平衡计算温度相当,反映了变质早期中高温热液活动的特征。第II类是富CO2 包裹体,包括单相的碳质流体包裹体(L CO2、L CO2-CH4或L CO2-N2)和两相富CO2包裹体(L CO2-L H2O)2个亚类。碳质流体包裹体是常见类型,有时与L CO2-LH2O型伴生,在较晚期的黄铜矿-黄铁矿石英脉中表现为原生特征,而在较早的石英脉中常表现为次生特征。萨热阔布的碳质流体可分为纯CO2包裹体和CO2-CH4体系包裹体,纯CO2包裹体的固体CO2熔化温度(Tm,CO2)为 -60~-56.5℃,CO2部分均一温度(Th,CO2) 变化于-23~+31℃;密度一般为0.85~0.89g·m-3。CO2-CH4包裹体的Tm,CO2<-57℃,可低达-78.1℃,Th,CO2低达-33.7~-17.7℃, 其密度高达1.01~1.07g·m-3。VMS矿床中晚期叠加的黄铜矿石英脉中碳质流体包裹体可分为贫CH4-N2和富CH4-N2的CO2-CH4-N2包裹体,贫CH4-N2的碳质包裹体Tm,CO2=-63.3~-57℃,Th,CO2=-27.5~+29.7℃;富CH4-N2的CO2-CH4-N2包裹体Tm,CO2=-83.4~-65.5℃,Th,CO2=-56.0~+16.9℃。铜金石英脉中与碳质流体共生的LCO2-LH2O型包裹体均一温度Th,total=205~370℃,略低于第I类高盐度包裹体的Th,total=369~512℃。据CO2流体高温高压相图估算包裹体的捕获压力至少为110~300MPa。金(铜)石英脉的主体在相当于445~566℃的高温条件下形成的,而金铜矿化则是在高于205~370℃、110~330MPa的中高温中深条件下发生的。流体包裹体的δ18O为7.54‰~11.84‰ (QI)和3.82‰~7.82‰ (QII), δD为-84.7‰~-98.2‰(QI)和-75.8‰~-108.8‰ (QII)。结合地质特征和流体研究,说明成矿热液来源与区域变质及相关的岩浆活动有关。  相似文献   

3.
4.
5.
黑牛洞铜矿床经历了早期韧性变形-变质作用和成矿期的韧-脆性变形作用。早期韧性变形-变质作用过程中围岩可能分异出含CO2流体,并形成顺片理发育的磁黄铁矿、黄铜矿等矿化。成矿期为伴随江浪穹窿隆升的韧-脆性变形期,含矿石英脉中流体包裹体主要以富液相流体包裹体为主,次为纯气相流体包裹体。流体包裹体成分测试结果显示,富液相流体包裹体主要成分为水,含少量CO2和甲烷等烃类碳质流体;纯气相流体包裹体主要为甲烷,表明成矿流体为富水含炭质流体。流体包裹体氢、氧同位素测试结果表明,黑牛洞矿床含矿流体中的水主要来源于围岩中的变质水。燕山期花岗岩侵位,江浪穹窿隆升,韧-脆性变形形成系列滑脱断层。在此减压、降温过程中,成矿流体被活化并聚集、填充到滑脱断层内。  相似文献   

6.
江西永平铜矿下盘网脉状矿化的流体包裹体研究   总被引:11,自引:16,他引:11  
永平块状硫化物矿床下盘脉状矿化的流体包裹体的温度介于220—400℃,原始流体盐度5.1~9.3wt.%NaCl。第一阶段脉状矿化形成于较低的温度范围(集中于220~320℃),此后流体温度逐渐升高,形成了第二阶段脉状矿化(240—400℃),最后流体温度稍微降低形成了第三阶段脉状矿化(290~370℃)。在演化过程中流体盐度也发生变化。形成第一脉状矿化时流体盐度较高(为6~9wt.%NaCl)。第二阶段脉状矿化时流体盐度变化不大(5.1~9.1wt%NaCl),但该阶段流体明显发生过沸腾作用,造成了端员组分的流体盐度分别为1.2~3.3wt%NaCl和41.2~45.5wt%NaCl。第三阶段矿化脉的形成时,流体的盐度有所降低(3.5~7.9wt%NaCl),也可见到局部的沸腾作用。三阶段脉状矿化脉石英流体包裹体的Cl^-和SO4^2的含量从第一阶段到第二阶段明显增高,到第三阶段降低;Na^+、K^+从第一阶段到第二阶段明显增高,到第三阶段有所降低。三阶段脉状矿化中的流体包裹体中均含有微量的二氧化碳(CO2)、硫化氢(H2S)和氮气(N2)等挥发组分,其中第二阶段脉状矿化中的挥发份相对其它两阶段脉较为富集。  相似文献   

7.
雪鸡坪铜矿床产于印支晚期石英二长闪长玢岩-石英闪长玢岩-石英二长斑岩复式侵入体内,为一斑岩型铜矿床。矿床形成经历了多阶段热液成矿作用,主要有微细脉浸染状黄铁矿±黄铜矿-石英、细脉状辉钼矿±黄铁矿±黄铜矿-石英及微细脉状贫硫化物-石英-方解石等。流体包裹体岩相学、显微测温、激光拉曼及碳、氢、氧同位素综合研究表明,微细脉浸染状黄铁矿±黄铜矿-石英阶段石英中主要发育含Na Cl子矿物三相及气液两相包裹体,与含矿的石英二长斑岩石英中发育的流体包裹体特征相似,表明成矿流体主要为中高温、高盐度Na Cl-H2O体系热液,可能主要来源于印支期石英二长斑岩侵入体;辉钼矿±黄铁矿±黄铜矿-石英中主要发育含CO2三相及气液两相包裹体,成矿流体为中温、低盐度Na Cl-CO2-H2O体系热液,与前者来源明显不同;贫硫化物-石英-方解石石英中主要发育气液两相包裹体,成矿流体为中低温、低盐度Na Cl-H2O体系热液,推测其可能较多来自于大气降水。因此,雪鸡坪铜矿床为不同来源、不同地球化学性质热液叠加成矿作用的结果。  相似文献   

8.
胶西北留村金矿成矿流体特征与矿床成因   总被引:1,自引:0,他引:1  
留村金矿床位于胶东招远-莱州成矿带南端,是发育于古老变质岩中的小型石英脉型金矿.流体包裹体研究表明,留村金矿成矿流体为中低温、中低盐度的H2O-CO2-NaCl型流体体系,成矿流体从初始H2O-CO2-NaCl 体系逐渐演化成简单的低盐度H2O-NaCl体系,主成矿期的温度、压力分别为161~354℃和80~310 M...  相似文献   

9.
宁芜北部脉状铜矿床地质与成矿流体特征研究   总被引:2,自引:1,他引:2       下载免费PDF全文
提要:宁芜北部地区分布众多热液成因的脉状铜矿床。本文对区内的谷里铜矿和南门头铜矿进行了流体包裹体研究,结果表明,二者石英-金属硫化物期石英的流体包裹体均一温度分别为202.9~299.4℃、166.7~355.4℃;盐度分别为4.5 wt% NaCl eqv.~11.1 wt% NaCl eqv.、3.5 wt% NaCl eqv.~12.0 wt% NaCl eqv.;密度分别为0.75~1.01 g/cm3 、0.80~0.89 g/cm3;估算二者的成矿压力和深度分别为18.2~30.4 MPa、0.69~1.15 km和12.8~35.1 MPa、0.48~1.32 km。谷里和南门头铜矿(体)成矿流体均具有中低盐度、低密度和浅成条件等共同点,但前者为中温流体,后者为中高-中低温流体。激光拉曼光谱分析显示二者的包裹体气相组成有明显区别,南门头的包裹体气相成分组合为H2O+CO2±N2,而谷里铜矿包裹体气相组分仅见H2O。结合矿床地质特征,如矿物组合、赋矿围岩、矿化蚀变、成矿岩体等方面的差异,推测宁芜北部可能存在两期铜成矿,早期与大王山旋回的辉石闪长玢岩有关(以谷里铜矿为代表);晚期与姑山—娘娘山旋回的花岗岩类有关(以南门头为代表)。  相似文献   

10.
山西中条山铜矿峪斑岩型铜矿床成矿流体特征   总被引:1,自引:1,他引:1  
铜矿峪铜矿床位于中条山铜多金属成矿带,是目前中国最古老的斑岩型铜矿床之一。基于详尽的野外地质调查,结合流体包裹体岩相学、显微测温、群包裹体成分和碳、氢、氧、硫同位素分析等研究,探讨铜矿峪铜矿床成矿流体来源、性质及其演化和成矿物质来源。铜矿峪铜矿床的成矿阶段可划分为红钠化(石英-钠长石)阶段,钾长石-石英阶段,石英-硫化物阶段,石英-碳酸盐阶段(石英-方解石-硫化物阶段和石英-铁白云石-硫化物阶段)和碳酸盐阶段。流体包裹体类型主要有富液相气液两相包裹体(Ⅰ型)、含子晶包裹体(Ⅱ型)和CO2包裹体(Ⅲ型),还有少量的富气相包裹体(Ⅳ型)和液相包裹体(Ⅴ型),成矿流体系统早期为中高温、高氧逸度、富CO2的岩浆热液,中阶段经过流体沸腾、温度降低、氧逸度降低、CO2逸失等过程演化为还原性流体,使得大量金属硫化物沉淀,最后由于大气降水的不断加入和降温等过程,形成晚期的低温、中低氧逸度、低盐度、贫CO2的大气降水热液。氢、氧同位素组成(δ18OH2O值变化范围为6.5‰~-1.10‰,δD值变化范围为-99‰~-58‰)显示,从早阶段到晚阶段,成矿流体从以原生岩浆水为主,到晚期大气降水为主。9件硫化物样品δ34S值变化于1.1‰~4.8‰,平均值为2.44‰。表明成矿物质具有深源的特征。  相似文献   

11.
阿尔泰大东沟铅锌矿的碳质流体及其成因   总被引:5,自引:0,他引:5  
大东沟铅锌矿是阿尔泰南缘泥盆纪克朗火山-沉积盆地的块状硫化物矿床之一,在石炭—二叠纪同造山的区域变质过程中,受到热液叠加改造作用,层状铅锌矿体发育脉状石英和矿化。本文对阿勒泰大东沟铅锌矿区石英脉中的包裹体进行了详细的岩相学和显微测温研究,估算出包裹体形成时的物理化学条件,并采用激光拉曼、同步辐射X射线荧光(SRXRF)对流体包裹体进行了成分测试。结果显示,石英脉中的包裹体主要为碳质流体包裹体,多以面状、带状分布,最低捕获温度在209~459℃之间,密度为0.75~1.15g/cm3,最低捕获压力在110~540MPa之间。初步研究表明碳质流体的来源与同造山的变质作用有关,而与海底喷流沉积无关。激光拉曼测试结果表明包裹体气液主要成分为CO2和N2。SRXRF测试碳质包裹体中金属微量元素显示低Cu、Zn、Pb,而富集Au。  相似文献   

12.
哈马迪金矿位于苏丹东北部,矿床产于阿拉伯-努比亚地盾新元古界变质岩系中,属于受剪切带控制的造山型金矿床。金矿体赋存在角闪片岩内近南北向的片理化蚀变带中,围岩蚀变主要为黄铁绢英岩化,以及绿泥石化和碳酸盐化等。在含矿石英细脉中赋存有大量的极富CO2的碳质流体包裹体。这些包裹体几乎不含水,含有少量CH4(XCH4=0~0.10)。脉石英中碳质流体包裹体既有孤立或随机分布的原生包裹体,也有呈线性分布的次生包裹体,最晚期还有次生水溶液包裹体的分布。碳质流体包裹体的三相点(Tm,CO2)范围变化不大(-58.4~-57.0℃),但均一温度(Th,CO2)范围变化较大(-19℃~+29℃)。捕获的P-T条件可由LCO2包裹体的ρ值或Th,CO2值,以及与其伴生的CO2-H2O包裹体最终均一温度Th,TOT值,从有关相图中估算。早期碳质流体包裹体的捕获P-T条件范围为280~360℃、80~320MPa。金矿化发生在变质峰期之后的退变质作用晚期。广泛发育的热液蚀变说明碳质流体并非来自单一的流体源,寄主石英变形很弱也不能解释水从H2O-CO2-盐流体包裹体中优先淋失、残留大量的CO2±CH4包裹体。碳质流体包裹体可能的成因是:在金成矿的退变质时期,来自深部的H2O-CO2-盐流体,由于P-T下降而发生不混溶,H2O在热液蚀变中被大量消耗,而CO2则以碳质流体包裹体的形式被得捕获在脉石英中。  相似文献   

13.
通过对东沟铜矿床的成矿特征、流体包裹体地球化学以及矿床成因研究,获得了如下认识:① 成矿环境为晚寒武世的大洋扩张脊环境,容矿岩石为蛇绿岩套上部的基性火山岩,矿床成矿金属组合为Cu-Zn(少量),围岩蚀变主要有硅化、绿泥石化、碳酸盐化及绿帘石化等,其中,硅化、绿泥石化与矿体的关系最为密切;② 对不同类型矿石中黄铁矿、黄铜矿的电子探针分析均表明,具有低温或中低温热液成矿的特征;③ 流体包裹体地球化学研究表明,该区成矿期石英中包裹体类型简单,仅有纯液体包裹体和液体包裹体,气相分数低,液体包裹体气相成分以CO2为主,液相成分主要为H2O;矿床成矿流体温度为150~200℃,盐度w(NaCleq)为13%~16%,密度为0.87~0.95 g/cm3;④ 矿床属于"塞浦路斯"型块状硫化物矿床。关键字 地球化学;成矿特征;流体包裹体;塞浦路斯型矿床;东沟铜矿;北祁连  相似文献   

14.
李晓东  张艳  韩润生  王磊  吴建标  成功 《地质论评》2022,68(6):2305-2318
流体包裹体是近年来研究地质流体,尤其是成矿流体的关键途径,各种与之相关的测试技术与方法及理论成果日新月异。流体包裹体研究不仅可以获得成矿流体的物理化学条件,还可以示踪成矿物质来源与组成,为识别矿床类型、构建成矿模式提供直接证据。笔者等从流体包裹体岩相学、均一温度与盐度、成分分析、pH测试与计算、P—V—T—x状态方程、热液金刚石压腔及其在矿床学上的应用7个方面对流体包裹体的研究与发展进行全面的梳理。首先,系统总结了近年来流体包裹体各方面的最新研究进展和发展趋势,分析了流体包裹体成分测试中存在的主要问题,为其发展提供了一定的方向性;其次对各类矿床的成矿流体和流体包裹体特征进行了归纳整理,对分析矿床的成因类型具有重要意义;最后,提出了流体包裹体在矿床学研究中的发展方向。  相似文献   

15.
小秦岭东桐峪金矿床的流体包裹体研究   总被引:2,自引:2,他引:2  
东桐峪金矿床位于小秦岭金矿田的中西部,其含金石英脉受韧性剪切构造带的控制。该矿床的构造-成矿过程可划分为4个阶段:Ⅰ黄铁矿-乳白色石英脉阶段;Ⅱ灰白色石英-黄铁矿阶段;Ⅲ石英-多金属硫化物阶段;Ⅳ石英-碳酸盐阶段。相对于小秦岭地区的其他金矿床,东桐峪金矿床的流体包裹体研究资料相对缺乏。文章表明,该矿床内的流体包裹体类型主要为CO2-H2O包裹体和水溶液包裹体,见少量纯液相CO2包裹体。显微测温表明,Ⅰ阶段的构造-成矿流体以中温、富CO2等挥发分为特征,包裹体均一温度为221~392℃,盐度w(NaCleq)为5.5%~7.9%,密度为0.84~0.93 g/cm3;Ⅱ阶段和Ⅲ阶段以CO2-H2O±CH4流体为主,包裹体均一温度为205~350℃(Ⅱ阶段)和224~271℃(Ⅲ阶段),盐度w(NaCleq)集中于5.1%~7.1%,密度为0.83~0.96 g/cm3;Ⅳ阶段的流体演化为中-低温、低盐度的盐水溶液体系,包裹体均一温度为175~185℃。文章对该矿床各成矿阶段的压力进行了估算,Ⅰ、Ⅱ、Ⅲ阶段的流体最小捕获压力分别为123~160 MPa、160~170 MPa、170 MPa左右。  相似文献   

16.
新疆阿尔泰大东沟铅锌矿床流体包裹体特征及成矿作用   总被引:9,自引:3,他引:9  
大东沟铅锌矿床位于阿尔泰山南缘克兰盆地内,矿体呈层状展布,与地层产状一致,直接容矿围岩为下泥盆统康布铁堡组火山-沉积岩,矿石构造以条带状、浸染状、细脉状为主,矿石矿物成分相对简单,主要为方铅矿、闪锌矿和黄铁矿等.文章对大东沟铅锌矿床不同成矿阶段的石英、方解石和闪锌矿中的流体包裹体进行了测温,对石英和闪锌矿中的流体包裹体进行了激光拉曼光谱分析,并对部分石英样品进行了气相及离子色谱分析.结果表明,大东沟铅锌矿床流体包裹体主要有NaCl-H2O、CO2-H2O±CH4和CO2-H2O-NaCl三种类型;均一温度变化范围较大,为973~480℃,主要集中于140~300℃,流体盐度w(NaCleq)为02%~571%,主要集中于32%~148%;流体包裹体气相成分主要为CO2和H2O,含少量CH4、N2、H2等,液相成分以Na+、Ca2+、F-、Cl-为主,K+、SO42-次之,并含少量Mg2+、Br-和NO-3,计算所得的离子浓度为366%~580%.结合已有的稳定同位素资料,方解石中的δ13CV-PDB值为-42‰~04‰,石英流体包裹体中的δDV-SMOW为-89‰~-127‰,计算所得的石英及方解石的δ18O水值在-114‰~76‰之间,表明成矿流体主要为岩浆水与大气降水的混合物,流体中的碳主要来源于海相碳酸盐岩,成矿流体的物理化学条件的改变及流体的不混溶作用在成矿过程中起了重要作用.  相似文献   

17.
新疆阿尔泰铁木尔特铅锌矿床流体包裹体研究及地质意义   总被引:3,自引:3,他引:3  
铁木尔特中型铅锌矿是阿尔泰山南缘克兰盆地内的重要VMS型矿床。矿床赋存于上志留统-下泥盆统康布铁堡组上亚组第二岩性段,容矿岩石为大理岩、绿泥石英片岩、变钙质粉砂岩、夕卡岩。矿体呈似层状和透镜状。矿床的形成经历了喷流沉积期、叠加改造期和表生期。石英、长石、方解石和石榴子石中包裹体类型主要为液体包裹体,在石英中另出现了气体包裹体、纯气体包裹体、含子矿物多相包裹体、含液体CO2的三相包裹体和两相CO2包裹体。喷流沉积期成矿流体均一温度变化于150~330℃,其峰值是165℃和285℃,成矿流体盐度(NaCleq)为4%~16%,流体密度为0.77~0.97g/cm3,流体阳离子主要以Na+为主,次之为K+,阴离子以Cl-为主,其次是SO42-,气相成分主要是H2O和CO2。叠加改造期均一温度范围是150~480℃,峰值为285℃,盐度(NaCleq)为2.2%~17.08%和33.93%~47.2%,流体密度变化于0.61~1.03g/cm3之间,流体阳离子主要以Na+为主,次为K+、Mg2+、Ca2+,阴离子以Cl-为主,其次是SO42-,气相成分主要是H2O和CO2,其次为N2、CH4,含有少量C2H6。  相似文献   

18.
阿尔泰铁木尔特铅锌矿床的碳质流体组合及其地质意义   总被引:6,自引:4,他引:6  
铁木尔特铅锌矿是阿尔泰克兰盆地内最主要的VMS型矿床。矿床受控于阿巴宫-库尔提断裂,铅锌矿体分布于该断裂NE逆冲盘的下泥盆统康布铁堡组地层绿泥石英片岩、大理岩或层状矽卡岩中。矿体形态多呈透镜状、似层状,并整合产于变质岩系中,发育多含矿化层。金属矿物有方铅矿、闪锌矿、黄铜矿、黄铁矿和磁黄铁矿等。铁木尔特铅锌矿床晚期发育多金属硫化物石英脉,至少可识别出3个流体包裹体组合(FIA)。FIO为高盐度流体包裹体组合,主要为含子矿物的多相包裹体(L-V-S型),部分为气液两相包裹体(L-V型),局限于单个石英颗粒内,包裹体呈无序分布,或呈孤立的单个包裹体分布,包裹体的最终均一温度322—422.5℃。F11为次生的CO2-H2O流体包裹体组合,主要由单相(LCO2)和两相(LCO2-LH2O)的富CO2包裹体组成,呈线性分布,穿透石英颗粒边界,明显属于次生包裹体范畴。FI2为碳质(CO2-CH4)流体包裹体组合,广泛发育,包裹体主要由单相(LCO2、LCO2-CH4或LCO2-N2)、少量两相(LCO2-LH2O)富CO2包裹体组成,大小5μm-20μm,成群定向分布,穿透石英颗粒边界并切断FI1,是晚于FI1的次生包裹体组合,反映晚期较大的构造一流体活动。对FI2的详细研究表明,LCO2型包裹体的TmCO2=-63.3~-57.7℃,ThCO2=-27.5~+29.7℃;LCO2-CH4型或LCO2-N2型包裹体的TmCO2=-80.5~-5.5℃,LhCO2=-56.0~-25.0℃;LCO2-LH2O型包裹体CO2相的ThCO2=-66.9--0.9℃,ThCO2=-13.3~+2.3℃,包裹体的最终均一温度Th,total=243.1—361.1℃。铁木尔特次生碳质流体组合,萨热阔布金矿主成矿阶段、赛都-多拉纳含金剪切带中早期透镜状石英脉碳质流体组合,以及阿舍勒等矿床的次生碳质流体组合,都具有相似的流体性质,均为高密度的CO2-CH4-N2流体,其来源与石炭-二叠造山作用主期的区域动力热流变质作用有关。  相似文献   

19.
闹枝铜金矿床是延边内生金铜矿集区内的典型矿床之一,矿体主要为含金黄铜矿黄铁矿石英脉型。笔者运用显微测温、激光拉曼探针,对其矿物内的流体包裹体进行了系统研究。实验结果表明:①流体包裹体的类型主要为气液两相包裹体,其次为纯气相、富气相包裹体及纯液相包裹体,还有少量含子晶的多相包裹体;②流体包裹体的均一温度为150~410℃,与黄铁绢英岩、石英-黄铁矿、石英-多金属硫化物及石英方解石脉4个矿化蚀变阶段相对应的流体包裹体的均一温度分别为350~410℃、290~350℃、210~290℃、150~210℃;③流体包裹体的盐度w(NaCleq)为1.74%~20.97%,Ⅰ、Ⅱ、Ⅲ、Ⅳ矿化阶段成矿流体的盐度w(NaCleq)分别为2.396%~5.548%、2.24%~8.68%、1.74%~20.97%和6.3%;④流体包裹体的气体成分主要为H2O和CO2。结合前人的研究成果,笔者进一步确定该矿床的成矿流体具有深源岩浆热流体性质,在流体上升过程中曾发生过弱的沸腾作用,并在硫化物石英脉、多金属硫化物石英脉、方铅矿脉以及石英方解石脉形成过程中,伴有少量地下水或大气水的加入。  相似文献   

20.
云南羊拉铜矿床位于金沙江构造带中部,是中-晚三叠世金沙江洋盆向西俯冲闭合碰撞造山过程中形成的一个大型铜矿床。矿体多呈层状、似层状顺层产出,但明显受层间破碎带和滑脱带控制。从流体包裹体研究入手,讨论了该矿床成矿流体的特征、演化以及流体不混溶(沸腾)作用与成矿的关系。流体包裹体研究表明,干夕卡岩阶段(Ⅰ)、湿夕卡岩磁铁矿阶段(Ⅱ)、石英硫化物阶段(Ⅲ)以及方解石硫化物阶段(Ⅳ)中发育多种类型的包裹体,主要为气液水两相包裹体和含子矿物多相包裹体,纯液相水包裹体次之,少见纯气相有机质包裹体。其中,含子矿物多相包裹体发育于Ⅰ阶段石榴石、Ⅱ阶段绿帘石,尤其是Ⅲ阶段石英中。Ⅰ、Ⅱ阶段成矿流体具有高温、高盐度特征,均一温度分别为413~593 ℃和336~498 ℃,盐度分别为19.1%~49.7% NaCleq和15.7%~53.3% NaCleq;Ⅲ阶段成矿流体均一温度为148~398 ℃,并具有低盐度(2.1%~9.6% NaCleq)与高盐度(35.5%~65.3% NaCleq)共存的特征;Ⅳ阶段成矿流体具有低温(132~179 ℃)、低盐度(3.4%~10.4% NaCleq)特征。根据流体包裹体的微观特征并结合矿区的宏观地质特征,认为流体不混溶(沸腾)是导致本矿区金属沉淀成矿的主要机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号