首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The non-Gaussian intensity fluctuation spectra observed by Cohenet al. (1967) are analysed. Computations of the length scales derived from the phase autocorrelation functions using Buckley's method (1971, I) indicate that for a rms phase deviation of 4 radians or more the diffracting medium behaves as one with its phase structure having ‘inner’ and ‘outer’ scales of turbulent blobs or eddies which are present in a turbulent medium.  相似文献   

2.
We study the non-Gaussianity induced by the Sunyaev–Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP . This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP –2MASS cross-correlations by a factor f 2, which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.  相似文献   

3.
We make use of three-dimensional clustering analysis, inertia tensor methods, and the minimal spanning tree technique to estimate some physical and statistical characteristics of the large-scale galaxy distribution and, in particular, of the sample of overdense regions seen in the Las Campanas Redshift Survey (LCRS). Our investigation provides additional evidence for a network of structures found in our core sampling analysis of the LCRS : a system of rich sheet-like structures, which in turn surround large underdense regions criss-crossed by a variety of filamentary structures.
We find that the overdense regions contain ∼40–50 per cent of LCRS galaxies and have proper sizes similar to those of nearby superclusters. The formation of such structures can be roughly described as a non-linear compression of protowalls of typical cross-sectional size ∼ 20–25  h −1 Mpc; this scale is ∼5 times the conventional value for the onset of non-linear clustering – to wit, r 0, the autocorrelation length for galaxies.
The comparison with available simulations and theoretical estimates shows that the formation of structure elements with parameters similar to those observed is presently possible only in low-density cosmological models, Ωm h ∼0.2–0.3, with a suitable large-scale bias between galaxies and dark matter.  相似文献   

4.
The Planck mission is the most sensitive all-sky cosmic microwave background (CMB) experiment currently planned. The High-Frequency Instrument (HFI) will be especially suited for observing clusters of galaxies by their thermal Sunyaev–Zel'dovich (SZ) effect. In order to assess Planck 's SZ capabilities in the presence of spurious signals, a simulation is presented that combines maps of the thermal and kinetic SZ effects with a realization of the CMB, in addition to Galactic foregrounds (synchrotron emission, free–free emission, thermal emission from dust, CO-line radiation) as well as the submillimetric emission from celestial bodies of our Solar system. Additionally, observational issues such as the finite angular resolution and spatially non-uniform instrumental noise of Planck 's sky maps are taken into account, yielding a set of all-sky flux maps, the autocorrelation and cross-correlation properties of which are examined in detail. In the second part of the paper, filtering schemes based on scale-adaptive and matched filtering are extended to spherical data sets, that enable the amplification of the weak SZ signal in the presence of all contaminations stated above. The theory of scale-adaptive and matched filtering in the framework of spherical maps is developed, the resulting filter kernel shapes are discussed and their functionality is verified.  相似文献   

5.
Brightness fluctuations at 1.65 have been recorded by means of a 64-element array. Infrared photographs clearly show sunspots and granulation with a resolution better than 1. Quantitative analysis of the digitized data is used to compute autocorrelation and power spectrum. Half-width of autocorrelation (405 km) indicates a resolution comparable with the best observations in the visible range. Photographs and quantitative analysis show the existence of a strong contrast variation from the center to the limb. Seeing and instrumental effects are discussed. A model M.T.F. is utilized to compute a foreshortening correction. No attempt is made to get the actual absolute rms value. Nevertheless we find a definite variation of the observed rms which goes from 1.48%±±0.15, at the center, to 1.05%±0.15 at = 0.7 (after foreshortening correction).  相似文献   

6.
The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10?–?24. We found that the autocorrelation width \(A_{\mathrm{w}} ^{n}\) of SC \(n\) during the second half of its ascending phase correlates well with the modified length that is defined as \(T_{\mathrm{cy}}^{n+2} - T_{\mathrm{a}}^{n}\). Here \(T_{\mathrm{cy}}^{n+2}\) and \(T_{ \mathrm{a}}^{n}\) are the length and ascent time of SCs \(n+2\) and \(n\), respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs (i.e., \(n+1\), \(n+2\)) are readily available at the time of the peak of SC \(n\). The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).  相似文献   

7.
For more than a century now astronomers have used the O−C (Observed minus Calculated) method to detect the presence of systematic changes in the periods of variable stars. The method is based on an analysis of residuals from a linear fit to the observed epochs. A rather common error in applications of the method is a failure to make provision for autocorrelation which exists in the data. In this paper we consider a model that accounts for the presence of autocorrelation and develop an alternative to the O−C method of analysis. The proposed method focuses on the frequency domain characteristics of observed periods. Its use is illustrated by application to data from the variable stars X Aurigae and RY Sagittarii.  相似文献   

8.
We measure the autocorrelation function, ξ , of galaxies in the IRAS Point Source Catalogue galaxy redshift (PSC z ) survey and investigate its dependence on the far-infrared colour and absolute luminosity of the galaxies. We find that the PSC z survey correlation function can be modelled out to a scale of 10  h −1 Mpc as a power law of slope 1.30±0.04 and correlation length 4.77±0.20 . At a scale of 75  h −1 Mpc we find the value of J 3 to be 1500±400 .
We also find that galaxies with higher 100 μm/60 μm flux ratio, corresponding to cooler dust temperatures, are more strongly clustered than warmer galaxies. Splitting the survey into three colour subsamples, we find that, between 1 and 10  h −1 Mpc, the ratio of ξ is a factor of 1.5 higher for the cooler galaxies compared with the hotter galaxies. This is consistent with the suggestion that hotter galaxies have higher star formation rates, and correspond to later-type galaxies which are less clustered than earlier types.
Using volume-limited subsamples, we find a weak variation of ξ as a function of absolute luminosity, in the sense that more luminous galaxies are less clustered than fainter galaxies. The trend is consistent with the colour dependence of ξ and the observed colour–luminosity correlation, but the large uncertainties mean that it has a low statistical significance.  相似文献   

9.
In this paper we study one-dimensional sections of the maps of WMAP ILC and of the NVSS survey on scale lengths of 0.75, 3, 4.5, and 6.75 degrees and analyze the correlation properties of the sections. On these maps we identify the domains where the absolute value of the correlation coefficient exceeds 0.5. The catalog of such domains is presented. It is shown that the number of the domains agrees with the number of such domains on simulated maps and this fact may be indicative of just statistical agreement of the arrangement of the domains considered.  相似文献   

10.
We compute precise predictions for the two-point correlation function of local maxima (or minima) in the temperature of the microwave background, under the assumption that it is a random Gaussian field. For a given power spectrum and peak threshold there are no adjustable parameters, and since this analysis does not make the small-angle approximation of Heavens & Sheth, it is essentially complete. We find oscillatory features which are absent in the temperature autocorrelation function, and we also find that the small-angle approximation to the peak–peak correlation function is accurate to better than 0.01 on all scales. These high-precision predictions can form the basis of a sensitive test of the Gaussian hypothesis with upcoming all-sky microwave background experiments MAP and Planck , affording a thorough test of the inflationary theory of the early Universe. To illustrate the effectiveness of the technique, we apply it to simulated maps of the microwave sky arising from the cosmic string model of structure formation, and compare the two-point correlation function of peaks with the bispectrum as a non-Gaussian discriminant. We also show how peak statistics can be a valuable tool in assessing and statistically removing contamination of the map by foreground point sources.  相似文献   

11.
In situ measurements at the lunar surface at millimeter resolution by the Apollo astronauts have been analyzed. Several statistical parameters have been determined for the landing site. The surface roughness has been found to be very nearly gaussian. The root-mean-square slopes have been obtained over scales between 0.5 mm and 5 cm. They steadily decrease with increasing scale length from 58° to 2° and are in reasonable agreement with radar-measured values. The autocorrelation coefficient of the height distribution has also been obtained. It has a scale-length of 0.7 mm.Adjunct Professor at the University of Massachusetts.Visiting Scholar at the University of Massachusetts.  相似文献   

12.
Interannual variability of regional climate was investigated on a seasonal basis. Observations and two global climate model (GCM) simulations were intercompared to identify model biases and climate change signals due to the enhanced greenhouse effect. Observed record length varies from 40 to 100 years, while the model output comes from two 100-year equilibrium climate simulations corresponding to atmospheric greenhouse gas concentrations at observed 1990 and projected 2050 levels. The GCM includes an atmosphere based on the NCAR CCM1 with the addition of the radiative effects of CH4, N2O and CFCs, a bulk layer land surface and a mixed-layer ocean with thermodynamic sea-ice and fixed meridional oceanic heat transport.Because comparisons of interannual variability are sensitive to the time period chosen, a climate ensemble technique has been developed. This technique provides comparisons between variance ratios of two time series for all possible contiguous sub-periods of a fixed length. The time autocorrelation is thus preserved within each sub-period. The optimal sub-period length was found to be 30 years, based on which robust statistics of the ensemble were obtained to identify substantial differences in interannual variability that are both physically important and statistically significant.Several aspects of observed interannual variability were reproduced by the GCM. These include: global surface air temperature; Arctic sea-ice extent; and regional variability of surface air temperature, sea level pressure and 500 mb height over about one quarter of the observed data domains. Substantial biases, however, exist over broad regions, where strong seasonality and systematic links between variables were identified. For instance, during summer substantially greater model variability was found for both surface air temperature and sea-level pressure over land areas between 20–50°N, while this tendency was confined to 20–30°N in other seasons. When greenhouse gas concentrations increase, atmospheric moisture variability is substantially larger over areas that experience the greatest surface warming. This corresponds to an intensified hydrologic cycle and, hence, regional increases in precipitation variability. Surface air temperature variability increases where hydrologic processes vary greatly or where mean soil moisture is much reduced. In contrast, temperature variability decreases substantially where sea-ice melts completely. These results indicate that regional changes in interannual variability due to the enhanced greenhouse effect are associated with mechanisms that depend on the variable and season.  相似文献   

13.
Results of analysis of about 150 autocorrelation functions are presented for the period from about 2300 hr on 5 October to about 1200 hr on 7 October 1967. A large percentage concentration of helium ions are observed. It reaches a value as high as 50 per cent with a maximum at around 800 km. Downward heat fluxes deduced from the temperature variations yield a value of about 2–2.5 × 109 eV cm?2 sec?1 during the period 1200–1600 hr and a value of about 1.5 × 108 eV cm?2 sec?1 during the period 0100–0400 hr at night. These agree well with other measurements. The O+ ions are found not to be in diffusive equilibrium, and from the O+ fluxes and the electron density profiles, the O+ drift velocity has been estimated. It is found that the speed can be as high as 1–5 × 103 cm sec?1 even at altitudes as high as 700 km.  相似文献   

14.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

15.
Das  T.K.  Nag  T.K. 《Solar physics》1999,187(1):177-184
In the present paper we look for periodicities in the mean solar magnetic field observed at Stanford Observatory, using Fourier transform and autocorrelation techniques. Apart from the periodicity equal to that of the synodic rotational modulation of the Sun, other periods were also found by examining the time series formed at different epochs of the solar cycle. From the aforesaid analyses a 14-day periodicity has been confirmed, which is found to occur in all the cases taken under consideration.  相似文献   

16.
The structure of the gas-dust complex W3 OH has been investigated in the main hydroxyl radio line at 1665 MHz with the QUASAR system in left- and right-hand circular polarizations. The emission dominates in right-hand circular polarization. Spectra have been taken on single dishes and interferometers. The spectral features become narrower with increasing baseline length, which is determined by compact knots in sources. The correlated flux densities on maximum-length baselines do not exceed 20 and 10 Jy in right- and left-hand circular polarizations, respectively. Radio maps have been obtained in both polarizations with various angular resolutions from 5 to 200 mas. The object W3 OH located in a Galactic arm is observed in the transverse direction, which reduces considerably the scattering φ sc ? 2 mas. A number of fragments are observed only in one of the polarizations; the emission from three sources is observed in both polarizations with a frequency separation reaching Δf = ±10.6 kHz, corresponding to the Zeeman splitting in a magnetic field H = 7.6 mG.  相似文献   

17.
In an attempt to identify the molecular shocks associated with the entrainment of ambient gas by collimated stellar winds from young stars, we have imaged a number of known molecular outflows in H2 v=1-0 S(1) and wide-band K. In each flow, the observed H2 features are closely associated with peaks in the CO outflow maps. We therefore suggest that the H2 results from shocks associated with the acceleration or entrainment of ambient, molecular gas. This molecular material may be accelerated either in a bow shock at the head of the flow, or along the length of the flow through a turbulent mixing layer.  相似文献   

18.
A reanalysis of NEAR X‐ray/gamma‐ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near‐Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma‐ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value,  ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls. Gamma‐ray derived abundances of hydrogen and potassium show no evidence for depletion of volatiles relative to ordinary chondrites, suggesting that the sulfur depletion observed in X‐ray data is a surficial effect, consistent with a space‐weathering origin. The newfound agreement between the X‐ray, gamma‐ray, and spectral data suggests that the NEAR landing site, a ponded regolith deposit, has an elemental composition that is indistinguishable from the mean surface. This observation argues against a pond formation process that segregates metals from silicates, and instead suggests that the differences observed in reflectance spectra between the ponds and bulk Eros are due to grain size differences resulting from granular sorting of ponded material.  相似文献   

19.
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey–Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km2 reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943–1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02–0.03 °C a− 1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation.  相似文献   

20.
Solar maps at 212 and 405 GHz obtained by the Solar Submillimetric Telescope (SST) show regions of enhanced brightness temperature, which coincide with the location of active regions. A statistical study of the radio emission from these active regions was performed for the first time at such high frequencies during 23 days on June and July 2002, when the atmospheric opacity was low. The brightest regions on the maps were chosen for this study, where the brightness excess observed varies from 3 to 20% above quiet Sun levels (i.e., 200–1000 K) at both wavelengths. Sizes of the regions of enhanced emission calculated at half the maximum value were estimated to be between 2′ and 7′. These sizes agree with observed sizes of active regions at other wavelengths such as Hα and ultraviolet. An important result is that the flux density spectra of all sources increase toward submillimeter frequencies, yielding flux density spectral index with an average value of 2.0. The flux density of the active region sources were complemented with that from maps at 17 and 34 GHz from the Nobeyama Radio Heliograph. The resulting spectra at all four frequencies were fit considering the flux density to be due to thermal bremsstrahlung from the active region. In the calculations, the source radius was assumed to be the mean of the measured values at 212 and 405 K. The effective temperatures of the radio emitting source, assumed homogeneous, obtained from this fit were 0.6–2.9 × 104 K, for source diameters of 2′–7′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号