首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Zheleznyakov  V. V.  Zlotnik  E. Ya. 《Solar physics》1989,121(1-2):449-456
It was shown by Zheleznyakov and Zlotnik (1980a, b) that in complex configurations of solar magnetic fields (in hot loops above the active centres, in neutral current sheets in the preflare phase, in hot X-ray kernels in the initial flare phase) a system of cyclotron lines in the spectrum of microwave radiation is likely to be formed. Such a line was obtained by Willson (1985) in the VLA observations at harmonics of the electron gyrofrequency. This communication interprets these observations on the basis of an active region model in which thermal cyclotron radiation is produced by hot plasma filling the magnetic tube in the corona above a group of spots. In this model the frequency of the recorded 1658 MHz line corresponds to the third harmonic of electron gyrofrequency, which yields the magnetic field (196 ± 4) G along the magnetic tube axis. The linewidth f/f 0.1 is determined by the 10% inhomogeneity of the magnetic field over the cross-section of the tube; the line profile indicates the kinetic temperature distribution of electrons over the tube cross-section with the maximum value 4 × 106 K. Analysis shows that study of cyclotron lines can serve as an efficient tool for diagnostics of magnetic fields and plasma in the solar active regions and flares.  相似文献   

2.
Using particle aspect approach, the effect of multi-ions densities on the dispersion relation, growth rate, perpendicular resonant energy and growth length of electromagnetic ion cyclotron wave with general loss-cone distribution function in hot anisotropic multi-ion plasma is presented for auroral acceleration region. It is observed that higher He+ and O+ ions densities enhance the wave frequency closer to the H+ ion cyclotron frequency and growth rate of the wave. The differential heating of He+ ions perpendicular to the magnetic field is enhanced at higher densities of He+ ions. The waves require longer distances to achieve observable amplitude by wave-particle interactions mechanism as predicted by growth length. It is also found that electron thermal anisotropy of the background plasma enhances the growth rate and reduces the growth length of multi-ions plasma. These results are determined for auroral acceleration region.  相似文献   

3.
We present the results of the spectral and timing analysis of the X-ray pulsar LMC X-4 based on data from the NuSTAR observatory in the broad X-ray energy range 3–79 keV. Along with a detailed analysis of the source’s averaged spectrum, high-precision spectra corresponding to different phases of the neutron star spin cycle have been obtained for the first time. The Comptonization model is shown to describe best the source’s spectrum, and the evolution of its parameters as a function of the pulse phase has been traced. For all spectra (the averaged and phase-resolved ones) in the energy range 5–55 keV we have searched for the cyclotron absorption line. The derived upper limit on the optical depth of the cyclotron line τ ~ 0.15 (3σ) points to the absence of this feature in the given energy range, which provides a constraint on the magnetic field of the neutron star: B <3 × 1011 or >6.5 × 1012 G. The latter constraint is consistent with the magnetic field estimate obtained by analyzing the pulsar’s power spectrum, B ? 3 × 1013 G. Based on our analysis of the phase-resolved spectra, we have determined the delay between the emission peaks and the equivalent width of the fluorescent iron line. This delay depends on the orbital phase and is apparently associated with the travel time of photons between the emitting regions in the vicinity of the neutron star and the region where the flux is reflected (presumably in the inflowing stream or at the place of interaction between the stream and the outer edge of the accretion disk).  相似文献   

4.
A potentially promising way to gain knowledge about the internal dynamics of extrasolar planets is by remote measurement of an intrinsic magnetic field. Strong planetary magnetic fields, maintained by internal dynamo action in an electrically conducting fluid layer, are helpful for shielding the upper atmosphere from stellar wind induced mass loss and retaining water over long (Gyr) time scales. Here we present a whole planet dynamo model that consists of three main components: an internal structure model with composition and layers similar to the Earth, an optimal mantle convection model that is designed to maximize the heat flow available to drive convective dynamo action in the core, and a scaling law to estimate the magnetic field intensity at the surface of a terrestrial exoplanet. We find that the magnetic field intensity at the core surface can be up to twice the present-day geomagnetic field intensity, while the magnetic moment varies by a factor of 20 over the models considered. Assuming electron cyclotron emission is produced from the interaction between the stellar wind and the exoplanet magnetic field we estimate the cyclotron frequencies around the ionospheric cutoff at 10 MHz with emission fluxes in the range 10−4-10−7 Jy, below the current detection threshold of radio telescopes. However, we propose that anomalous boosts and modulations to the magnetic field intensity and cyclotron emission may allow for their detection in the future.  相似文献   

5.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

6.
Coordinated observations involving ion composition, thermal plasma, energetic particle, and ULF magnetic field data from GEOS 1 and 2 often reveal the presence of electromagnetic ion cyclotron and magnetosonic waves, which are distinguished by their respective polarization characteristics and frequency spectra. The ion cyclotron waves are identified by a magnetic field perturbation that lies in a plane perpendicular to the Earth's magnetic field B0 and propagate along B0. They are associated with the abundance of cold He+ in the presence of anisotropic pitch angle distributions of ions having energies E > 20 keV, and were observed at frequencies near the He+ gyrofrequency. The magnetosonic waves are characterized by a magnetic field perturbation parallel to B0 and thus seem to be propagating perpendicular to the Earth's magnetic field. They often occur at harmonics (not always including the fundamental) at the proton gyrofrequency and are associated with phase-space-density distributions that peak at energies E ~ 5–30 keV and at a pitch angle of 90°. Such a ring-like distribution is shown to excite instability in the magnetosonic mode near harmonics of the proton gyrofrequency. Magnetosonic waves are associated in other cases with sharp spatial gradients in energetic ion intensity. Such gradients are encountered in the early afternoon sector (as a consequence of the drift shell distortion caused by the convection electric field) and could likewise constitute a source of free energy for plasma instabilities.  相似文献   

7.
For application to studies of the high latitude ionosphere, we have calculated ion velocity distributions for a weekly-ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV m?1. This shape persists for 1–2 hr after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fileds. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.  相似文献   

8.
Optical spectra taken in 1997–2008 are used to analyze the spectral peculiarities and velocity field in the atmosphere of the peculiar supergiant 3 Pup. The profiles of strong Fe II lines and of the lines of other iron-group ions have a specific shape: the wings are raised by emissions, whereas the core is sharpened by a depression. The latter feature becomes more pronounced with the increasing line strength, and the increasing wavelength. Line profiles are variable: the magnitude and sign of the absorption asymmetry, and the blue-to-red emission intensity ratios vary from one spectrum to another. The temporal Vr variations are minimal for the forbidden emissions and sharp shell cores of the absorption features of FeII(42), and other strong lines of iron-group ions. The average velocity for the above lines can be adopted as the systemic velocity: Vsys = 28.5 ± 0.5 km/s. The weakest photospheric absorptions and photospheric MgII, Si II absorptions exhibit well-defined day-to-day velocity variations of up to 7 km/s. Quantitative spectral classification yields the spectral type of A2.7±0.3 Ib. The equivalent widths and profiles of Hδ and Hγ, and the equivalent width of the OI 7774 Å triplet yield an absolute magnitude estimate of Mv=?5.5m ± 0.3m, implying the heliocentric distance of 0.7 kpc.  相似文献   

9.
An analysis of the local sources (LS) structure of the S-component of solar radio emission confirms the presence of a core component which is characterized by strong circular polarization and a steep growing spectrum at shorter centimeter wavelengths. These details coincide in position with the sunspots' umbra and their height above the photosphere does not generally exceed about 2000 km. Gyroresonance emission of thermal electrons of the corona is generally accepted as being responsible for this type of emission. The spectral and polarization observations of LS made with RATAN-600 using high resolution in the wavelength range 2.0–4.0 cm, allow us to measure the maximum magnetic fields of the corresponding sunspots at the height of the chromosphere-corona transition region (CCTR). This method is based on determining the short wavelength limit of gyroresonance emission of the LS and relating it to the third harmonic of gyrofrequency.An analysis of a large number of sunspots and their LS (core component) has shown a good correlation between radio magnetic fields near the CCTR and optical photospheric ones. The magnetic field in CCTR above a sunspot is found only 10 to 20% lower than in the photosphere. The resulting gradient of the field strength is not less than 0.25 G km–1. This result seems to contradict the lower values of magnetic fields generally found above sunspots using the chromospheric H line. Some possible ways of overcoming this difficulty are proposed.  相似文献   

10.
Ion velocity distributions in the auroral ionosphere   总被引:1,自引:0,他引:1  
For application to studies of the auroral ionosphere we have calculated the velocity distribution of the ions in a weakly-ionized plasma subjected to crossed electric and magnetic fields. We have retained enough terms in the series expansion of the distribution to enable us to determine under what conditions departures from the Maxwellian form become significant and what the nature of these departures is, but we cannot calculate precise values of the distribution function when the departures are large. Departures are negligibly small under conditions appropriate to the auroral ionosphere at low altitudes, where the ion-neutral collision frequency is much larger than the ion cyclotron frequency. At altitudes above about 120 km, however, the magnitude of the departures varies little with altitude. Electric fields greater than 25 mV m−1 cause departures from the Maxwellian distribution that are greater than 20 per cent at random velocities equal to or greater than twice the mean thermal speed of the ions. Under almost all conditions we find that the distribution is depleted in ions moving parallel to the magnetic field relative to those moving perpendicular, an effect that might be detectable in ionospheric measurements of ion temperature.  相似文献   

11.
Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT data and characterized by thermal X-ray spectra are known. They exhibit very similar properties and despite intensive searches their number remained constant since 2001 which led to their name “The Magnificent Seven”. Five of the stars exhibit pulsations in their X-ray flux with periods in the range of 3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the X-ray spectra which are interpreted as cyclotron resonance absorption lines by protons or heavy ions and/or atomic transitions shifted to X-ray energies by strong magnetic fields of the order of 1013 G. New XMM-Newton observations indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals variations in derived emission temperature and absorption line depth with pulse phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are interpreted as due to free precession of the neutron star. Modeling of the pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the surface temperature distribution of the neutron stars indicating hot polar caps which have different temperatures, different sizes and are probably not located in antipodal positions.  相似文献   

12.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

13.
Auroral ion velocity distributions for a polarization collision model   总被引:1,自引:0,他引:1  
We have calculated the effect that convection electric fields have on the velocity distribution of auroral ions at the altitudes where the plasma is weakly-ionized and where the various ion-neutral collision frequencies are much smaller than the ion cyclotron frequencies, i.e. between about 130 and 300 km. The appropriate Boltzmann equation has been solved by expanding the ion velocity distribution function in a generalized orthogonal polynomial series about a bi-Maxwellian weight factor. We have retained enough terms in the series expansion to enable us to obtain reliable quantitative results for electric field strengths as large as 90 mV m?1. Although we have considered a range of ion-neutral scattering mechanisms, our main emphasis has been devoted to the long-range polarization interaction. In general, we have found that to lowest order the ion velocity distribution is better represented by a two-temperature or bi-Maxwellian distribution than by a one-temperature Maxwellian, with there being different ion temperatures parallel and perpendicular to the geomagnetic field. However, the departures from this zeroth-order bi-Maxwellian distribution become significant when the ion drift velocity approaches (or exceeds) the neutral thermal speed.  相似文献   

14.
We analyze the observations of the transient X-ray pulsar 4U 0115+63 with the RXTE and INTEGRAL observatories in a wide X-ray (3–100 keV) energy band during its intense outbursts in 1999 and 2004. The energy of the fundamental harmonic of the cyclotron resonance absorption line near the maximum of the X-ray flux from the source (luminosity range 5 × 1037–2 × 1038 erg s?1) is ~11 keV. When the pulsar luminosity falls below ~5 × 1037 erg s?1, the energy of the fundamental harmonic is displaced sharply toward the high energies, up to ~16 keV. Under the assumption of a dipole magnetic field configuration, this change in cyclotron harmonic energy corresponds to a decrease in the height of the emitting region by ~2 km, while other spectral parameters, in particular, the cutoff energy, remain essentially constant. At a luminosity ~7 × 1037 erg s?1, four almost equidistant cyclotron line harmonics are recorded in the spectrum. This suggests that either the region where the emission originates is compact or the emergent spectrum from different (in height) segments of the accretion column is uniform. We have found significant pulse profile variations with energy, luminosity, and time. In particular, we show that the profile variations from pulse to pulse are not reduced to a simple modulation of the accretion rate specified by external conditions.  相似文献   

15.
Ming Xiong  Xing Li 《Solar physics》2012,279(1):231-251
Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave–particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfvén waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. In this paper, we assume that i) low-frequency Alfvén and fast waves, emanating from the solar surface, have the same spectral shape and the same amplitude of power spectral density (PSD); ii) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; iii) kinetic wave–particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha–proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfvén-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfvén-cyclotron wave at the same wave propagation angle θ, particularly at 80°<θ<90°. When Alfvén-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by a differential speed and a temperature anisotropy of alpha particles via the self-consistently evolving wave–particle interaction. Therefore, fast-cyclotron waves, as a result of linear mode coupling, constitute a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.  相似文献   

16.
We have obtained the spectrum of a middle-aged PSR B0656+14 in the 4300–9000 Å range with the ESO/VLT/FORS2. Preliminary results show that at 4600–7000 Å the spectrum is almost featureless and flat with a spectral index α ν ??0.2 that undergoes a change to a positive value at longer wavelengths. Combining with available multiwavelength data suggests two wide, red and blue, flux depressions whose frequency ratio is about 2 and which could be the 1st and 2nd harmonics of electron/positron cyclotron absorption formed at magnetic fields ~108 G in upper magnetosphere of the pulsar.  相似文献   

17.
It is argued that ozone measurements made by Weeks et al. (1972) can be interpreted in terms of the enhanced ionization present. The conversion of O2+ ions to oxonium, H3O+ · (H2O)n, ions plus the dissociative recombination of these ions provides for an increased OH and/or H formation rate. The resulting enhanced OH and HO2 concentrations reduce the ambient atomic oxygen and hence ozone populations. The net excess H + OH formation rate is found to lie between one and two times the ionization production rate at altitudes where oxonium ions are the dominant positive ion species.  相似文献   

18.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

19.
Geomagnetic field variations during five major Solar Energetic Particle (SEP) events of solar cycle 23 have been investigated in the present study. The SEP events of 1 October 2001, 4 November 2001, 22 November 2001, 21 April 2002 and 14 May 2005 have been selected to study the geomagnetic field variations at two high-latitude stations, Thule (77.5° N, 69.2° W) and Resolute Bay (74.4° E, 94.5° W) of the northern polar cap. We have used the GOES proton flux in seven different energy channels (0.8–4 MeV, 4–9 MeV, 9–15 MeV, 15–40 MeV, 40–80 MeV, 80–165 MeV, 165–500 MeV). All the proton events were associated with geoeffective or Earth directed CMEs that caused intense geomagnetic storms in response to geospace. We have taken high-latitude indices, AE and PC, under consideration and found fairly good correlation of these with the ground magnetic field records during the five proton events. The departures of the H component during the events were calculated from the quietest day of the month for each event and have been represented as ΔH THL and ΔH RES for Thule and Resolute Bay, respectively. The correspondence of spectral index, inferred from event integrated spectra, with ground magnetic signatures ΔH THL and ΔH RES along with Dst and PC indices have been brought out. From the correlation analysis we found a very strong correlation to exist between the geomagnetic field variation (ΔHs) and high-latitude indices AE and PC. To find the association of geomagnetic storm intensity with proton flux characteristics we derived the correspondence between the spectral indices and geomagnetic field variations (ΔHs) along with the Dst and AE index. We found a strong correlation (0.88) to exist between the spectral indices and ΔHs and also between spectral indices and AE and PC.  相似文献   

20.
Cosmic gamma-ray burst spectroscopy   总被引:1,自引:0,他引:1  
A review is given of the gamma-ray burst energy spectrum measurements on Venera 11 and Venera 12 space probes. The gamma burst continuum approximates in shape thermal brems-strahlung emission of a hot plasma. The radiation temperature varies over a broad range, 50–1000 keV, for different events. Spectra of many bursts contain cyclotron absorption and/or redshifted annihilation lines. Strong variability is typically observed in both continuum and line spectra. These spectral data provide convincing evidence for the gamma-ray bursts being generated by neutron stars with superstrong magnetic fields 1012–1013 G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号