首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary The well known ENSO (El Ni?o-Southern Oscillation) phenomenon is quantitatively identified in terms of SST (sea surface temperature) anomalies over the equatorial central and eastern Pacific and sea level pressure difference over eastern and western regions of the equatorial Pacific. The PNA (Pacific North American) atmospheric flow pattern, originally identified by Wallace and Gutzler (1981) is representative of a certain preferred configuration of the mid-tropospheric geopotential height field in the longitudinal sector extending from the mid-Pacific to the southeastern United States. The PNA index is defined as a linear combination of normalized geopotential height anomalies at the 700 mb level at four selected locations. Using multiple regression analysis, suitable linear combinations of predictors based on monthly values of ENSO and PNA indices are obtained which can foreshadow the summer season’s weather over the crop-growing region of the Canadian prairie provinces with a lead time of 2 to 7 months. The utility of the ENSO and PNA indices for advance indication of summer weather with implications for grain yields over the Canadian prairies is further discussed. Received September 10, 1996 Revised October 13, 1997  相似文献   

2.
The characteristics of interannual fluctuations of the surface air temperature over North America are investigated by using the surface air temperature data of 130 stations during 1941 through 1980. It is found that the surface air temperature bears about ten-year time scale oscillation over the southeastern and northwestern North America and along the west coast of the United States, and it has the characteristics of quasibiennial oscillation over the eastern North America. The ten-year scale oscillation of the surface air temperature is related to that of the sea surface temperature (SST) of North Pacific through the PNA pattern atmospheric circulation anomaly over North Pacific through North America. It is shown that the North Pacific SST has a closer association with the surface air temperature over North America than the central and eastern equatorial Pacific SST. The characteristics of the seasonal variations of the relationship between the North Pacific SST and the surface air temperature over No  相似文献   

3.
In this study, a group of indices were defined regarding intensity (P), area (S) and central position (λc, Φc) of the Aleutian low (AL) in the Northern Hemisphere in winter, using seasonal and monthly mean height field at 1000-hPa. These indices were calculated over 60 winter seasons from 1948/1949 to 2007/2008 using reanalysis data. Climatic and anomalous characteristics of the AL were analyzed based on these indices and relationships between the AL, and general circulations were explored using correlations between indices P, λc, and Pacific SST, as well as Northern Hemisphere temperature and precipitation. The main results are these: (1) AL is the strongest in January, when the center shifts to the south and west of its climatological position, and it is the weakest in December when the center shifts to the north and east. (2) AL intensity (P) is negatively correlated with its longitude (λc): a deeper low occurs toward the east and a shallower low occurs toward the west. On a decadal scale, the AL has been persistently strong and has shifted eastward since the 1970s, but reversal signs have been observed in recent years. (3) The AL is stronger and is located toward the east during strong El Nino winters and vice versa during strong La Nina years; this tendency is particularly evident after 1975. The AL is also strongly correlated with SST in the North Pacific. It intensifies and moves eastward with negative SST anomalies, and it weakens and moves westward with positive SST anomalies. (4) Maps of significance correlation between AL intensity and Northern Hemisphere temperature and rainfall resemble the PNA teleconnection pattern in mid-latitudes in the North Pacific and across North America. The AL and the Mongolian High are two permanent atmospheric pressure systems adjacent to each other during boreal winter over the middle and high latitudes in the Northern Hemisphere, but their relationships with the El Nino/La Nina events and with temperature and precipitation in the Northern Hemisphere are significantly different.  相似文献   

4.
Summary Estimates of the predictability of New Zealand monthly and seasonal temperature and rainfall anomalies are calculated using a cross-validated linear regression procedure. Predictors are indices of the large scale circulation, sea-surface temperatures, the Southern Oscillation Index and persistence. Statistical significance is estimated through a series of Monte Carlo trials. No significant forecast relationships are found for rainfall anomalies at either the monthly or seasonal time scale. Temperature forecasts are however considered to exhibit significant skill, with variance reductions of the order of 10–20% in independent trials. Temperature anomalies are most skilfully predicted over the North Island, and skill is greatest in Spring and Summer in most areas. At the monthly time scale, predictors local to the New Zealand region account for most of the forecast skill, while at the seasonal time scale, skill depends strongly upon “remote” predictors defined over regions of the southern hemisphere distant from New Zealand. Indices of meridional flow over the Tasman Sea/New Zealand region are found to be useful predictors, especially for monthly forecasts, perhaps as a proxy for atmospherically-forced sea surface temperature anomalies. Sea surface temperature anomalies to the west of New Zealand and in the tropical Indian Ocean are also useful, especially for seasonal predictions. Forecast skill is more reliably estimated at the monthly time scale than at the seasonal time scale, as a result of the larger sample size of monthly mean data. While long-term mean levels of skill may be estimated reliably over the whole data set, statistically significant decadal-scale variations are found in the predictability of temperature anomalies. Therefore, even if long-term forecast skill levels are reliably estimated, it may be impossible to predict the short-term skill of operational seasonal climate forecasts. Implications for operational climate predictions in mid-latitudes are discussed. Received July 18, 1997 Revised April 2, 1998  相似文献   

5.
Abstract

The Canadian Atmospheric Environment Service (A ES) Long‐ Range Transport (LRT) model has been used in the Canada‐United States Memorandum of Intent programme to compute transfer matrices in order to quantify the source‐receptor relationships between emission regions and selected receptor sites. Four‐day backward trajectories were computed from the selected sites for the year 1978 and were started from the 925‐mb level(~600 m). The Lagrangian concentration / deposition model computed sulphur concentrations and depositions for 9 receptor sites using an emissions inventory divided into 15 Canadian and25 United States emission regions.

The 40×9 source‐receptor matrices show that the greatest impact on a receptor site usually results from an emission region close to the site although the regions giving the greatest impact for air concentration and wet deposition are not necessarily identical. In addition, the matrices show the impacts of all the emission regions on all of the receptor sites ranked by the magnitudes of the matrix elements. The per cent contribution from each emission region at each receptor site is shown as well as the overall per cent contributions from both Canada and the United States.

These matrices are an attempt to quantify source‐receptor relationships in Canada and the United States for assessing emission control strategies. The uncertainties associated with the matrices are being studied.  相似文献   

6.
Summary  This study shows that precipitation over the United States has two time scales of intraseasonal variation at about 37 days and 24 days. The results are derived from the application of a combination of statistical methods including principal component analysis (PCA), singular spectrum analysis (SSA), and multi-channel singular spectrum analysis (MSSA) to over 10 years of gridded daily precipitation records. Both oscillations have largest amplitude during the cold season. The 37-day oscillation has larger interannual variability. Intraseasonal oscillations are most significant in the Pacific Northwest. The 37-day oscillation has opposite phases between the western and eastern United States, while the 24-day oscillation has the same phases. These intraseasonal time scale precipitation variations may be associated with previously revealed mid-tropospheric circulation anomalies that oscillate at similar time scales. Received February 7, 2000 Revised October 20, 2000  相似文献   

7.
Summary Based on analysis of NCEP reanalysis data and SST indices of the recent 50 years, decadal changes of the potential predictability of ENSO and interannual climate anomalies were investigated. Autocorrelation of Nino3 SST anomalies (SSTA) and correlation between atmospheric anomalies fields and Nino3 SSTA exhibit obvious variation in different decades, which indicates that Nino3 SSTA-related potential predictability of ENSO and interannual climate anomalies has significant decadal changes. Time around 1977 is not only a shift point of climate on the interdecadal time scale but also a catastrophe point of potential predictability of ENSO and interannual climate. As a whole, ENSO and the PNA pattern in boreal winter are more predictable in 1980s than in 1960s and 1970s, while the Nino3 SSTA-related potential predictability of the Indian monsoon and the East Asian Monsoon is lower in 1980s than in 1960s and 1970s. Received October 19, 1999 Revised December 30, 1999  相似文献   

8.
New estimates of the moistening of the atmosphere through evaporation at the surface and of the drying through precipitation are computed. Overall, the e-folding residence time of atmospheric moisture is just over 8 days. New estimates are also made of how much moisture that precipitates out comes from horizontal transport versus local evaporation, referred to as recycling. The results depend greatly on the scale of the domain under consideration and global maps of the recycling for annual means are produced for 500 km scales for which global recycling is 9.6%, consisting of 8.9% over land and 9.9% over the oceans. Even for 1000 km scales, less than 20% of the annual precipitation typically comes from evaporation within the domain. While average overall atmospheric moisture depletion and restoration must balance, precipitation falls only a small fraction of the time. Thus precipitation rates are also examined. Over the United States, one hour intervals with 0.1 mm or more are used to show that the frequency of precipitation ranges from over 30% in the Northwest, to about 20% in the Southeast and less than 4% just east of the continental divide in winter, and from less than 2% in California to over 20% in the Southeast in summer. In midlatitudes precipitation typically falls about 10% of the time, and so rainfall rates, conditional on when rain is falling, are much larger than evaporation rates. The mismatches in the rates of rainfall versus evaporation imply that precipitating systems of all kinds feed mostly on the moisture already in the atmosphere. Over North America, much of the precipitation originates from moisture advected from the Gulf of Mexico and subtropical Atlantic or Pacific a day or so earlier. Increases in greenhouse gases in the atmosphere produce global warming through an increase in downwelling infrared radiation, and thus not only increase surface temperatures but also enhance the hydrological cycle, as much of the heating at the surface goes into evaporating surface moisture. Global temperature increases signify that the water-holding capacity of the atmosphere increases and, together with enhanced evaporation, this means that the actual atmospheric moisture should increase. It follows that naturally-occurring droughts are likely to be exacerbated by enhanced potential evapotranspiration. Further, globally there must be an increase in precipitation to balance the enhanced evaporation but the processes by which precipitation is altered locally are not well understood. Observations confirm that atmospheric moisture is increasing in many places, for example at a rate of about 5% per decade over the United States. Based on the above results, we argue that increased moisture content of the atmosphere therefore favors stronger rainfall or snowfall events, thus increasing risk of flooding, which is a pattern observed to be happening in many parts of the world. Moreover, because there is a disparity between the rates of increase of atmospheric moisture and precipitation, there are implied changes in the frequency of precipitation and/or efficiency of precipitation (related to how much moisture is left behind in a storm). However, an analysis of linear trends in the frequency of precipitation events for the United States corresponding to thresholds of 0.1 and 1 mm/h shows that the most notable statistically significant trends are for increases in the southern United States in winter and decreases in the Pacific Northwest from November through January, which may be related to changes in atmospheric circulation and storm tracks associated with El Niño–Southern Oscillation trends. It is suggested that as the physical constraints on precipitation apply only globally, more attention should be paid to rates in both observations and models as well as the frequency of occurrence.  相似文献   

9.
Abstract

The impact of the two phases of El Niño‐Southern Oscillation (ENSO), namely El Niño and La Niña, on the surface and lower tropospheric temperature fields over Canada is documented. Gridded surface temperature data for 91 years (1900–1990) and 500–1000 hPa thickness data for 49 years (1946–1994) have been analyzed statistically in the context of El Niño, La Niña and normal years.

Using a composite analysis, the present study conclusively demonstrates that significant positive surface temperature anomalies spread eastward from the west coast of Canada to the Labrador coast from the late fall to early spring (November through May) following the onset of El Niño episodes. The accompanying temperatures in the lower troposphere show a transition from the Pacific/North American (PNA) pattern to the Tropical/Northern Hemisphere (TNH) pattern over the North American sector during the same period. Conversely, significant negative surface temperature anomalies spread southeastward from the Yukon and extend into the upper Great Lakes region by the winter season following the onset of La Niña episodes. Furthermore, the lower tropospheric temperatures show a negatively‐phased PNA‐like pattern in early winter which weakens considerably by May of the following year. Thus, while western Canadian surface temperatures are influenced during both phases of ENSO, eastern Canadian surface temperature effects are found during the El Niño phase only. The impact of ENSO on the Canadian surface temperatures is the strongest during the winter season and nearly disappears by spring (April and May). The largest positive (negative) anomalies are found to be centred over two separate regions, one over the Yukon and the other just west of Hudson Bay in the El Niño (La Niña) years. Over western Canada, mean wintertime temperature distribution of the El Niño (La Niña) years is found to be shifted towards warmer (colder) values relative to the distribution of the normal years.

This study suggests the possibility of developing a long‐range forecasting technique for Canada using ENSO related indices.  相似文献   

10.
This study uses multiple sea surface temperature(SST) datasets to perform a parallel comparison of three super El Ni os and their effects on the stratosphere. The results show that, different from ordinary El Ni os, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Ni o peak by more than 18 months. In the previous winter,relative to the mature phase of El Ni o, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific–North America(PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Ni os. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Ni o winter, positive polar cap temperature anomalies and circumpolar easterly anomalies,though different in timing, are also observed in the mature winters of the three super El Ni os. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.  相似文献   

11.
Bin Yu  Hai Lin 《Climate Dynamics》2013,40(5-6):1183-1200
The secular trends and interannual variability of wintertime temperatures over northern extratropical lands and circulations over the northern hemisphere are examined using the NCEP/NCAR reanalysis from 1961 to 2010. A primitive equation dry atmospheric model, driven by time-averaged forcing in each winter diagnosed from the NCEP reanalysis, is then employed to investigate the influences of tropical and extratropical forcing on the temperature and circulation variability. The model has no topography and the forcing is thus model specific. The dynamic and thermodynamic maintenances of the circulation and temperature anomalies are also diagnosed. Distinct surface temperature trends over 1961–1990 and 1991–2010 are found over most of the extratropical lands. The trend is stronger in the last two decades than that before 1990, particularly over eastern Canadian Arctic, Greenland, and Asia. The exchange of midlatitude and polar air supports the temperature trends. Both the diagnosed extratropical and tropical forcings contribute to the temperature and circulation trends over 1961–1990, while the extratropical forcing dominates tropical forcing for the trends over 1991–2010. The contribution of the tropical forcing to the trends is sensitive to the period considered. The temperature and circulation responses to the diagnosed tropical and extratropical forcings are approximately additive and partially offsetting. Covariances between the interannual surface temperature and 500-hPa geopotential anomalies for the NCEP reanalysis from 1961 to 2010 are dominated by two leading modes associated with the North Atlantic Oscillation (NAO) and Pacific-North American (PNA) teleconnection patterns. The diagnosed extratropical forcing accounts for a significant part of the NAO and PNA associated variability, including the interannual variability of stationary wave anomalies, as well as dynamically and thermodynamically synoptic eddy feedbacks over the North Atlantic and North Pacific. The tropical forcing contributes to the PNA related temperature and circulation variability, but has a small contribution to the NAO associated variability. Additionally, relative contributions of tropical Indian and Pacific forcings are also assessed.  相似文献   

12.
The link between the Pacific/North American pattern (PNA) and the North Atlantic Oscillation (NAO) is investigated in reanalysis data (NCEP, ERA40) and multi-century CGCM runs for present day climate using three versions of the ECHAM model. PNA and NAO patterns and indices are determined via rotated principal component analysis on monthly mean 500?hPa geopotential height fields using the varimax criteria. On average, the multi-century CGCM simulations show a significant anti-correlation between PNA and NAO. Further, multi-decadal periods with significantly enhanced (high anti-correlation, active phase) or weakened (low correlations, inactive phase) coupling are found in all CGCMs. In the simulated active phases, the storm track activity near Newfoundland has a stronger link with the PNA variability than during the inactive phases. On average, the reanalysis datasets show no significant anti-correlation between PNA and NAO indices, but during the sub-period 1973?C1994 a significant anti-correlation is detected, suggesting that the present climate could correspond to an inactive period as detected in the CGCMs. An analysis of possible physical mechanisms suggests that the link between the patterns is established by the baroclinic waves forming the North Atlantic storm track. The geopotential height anomalies associated with negative PNA phases induce an increased advection of warm and moist air from the Gulf of Mexico and cold air from Canada. Both types of advection contribute to increase baroclinicity over eastern North America and also to increase the low level latent heat content of the warm air masses. Thus, growth conditions for eddies at the entrance of the North Atlantic storm track are enhanced. Considering the average temporal development during winter for the CGCM, results show an enhanced Newfoundland storm track maximum in the early winter for negative PNA, followed by a downstream enhancement of the Atlantic storm track in the subsequent months. In active (passive) phases, this seasonal development is enhanced (suppressed). As the storm track over the central and eastern Atlantic is closely related to the NAO variability, this development can be explained by the shift of the NAO index to more positive values.  相似文献   

13.
A maximum of easterly zonal wind at 925 hPa in the Caribbean region is called the Caribbean Low-Level Jet (CLLJ). Observations show that the easterly CLLJ varies semi-annually, with two maxima in the summer and winter and two minima in the fall and spring. Associated with the summertime strong CLLJ are a maximum of sea level pressure (SLP), a relative minimum of rainfall (the mid-summer drought), and a minimum of tropical cyclogenesis in July in the Caribbean Sea. It is found that both the meridional gradients of sea surface temperature (SST) and SLP show a semi-annual feature, consistent with the semi-annual variation of the CLLJ. The CLLJ anomalies vary with the Caribbean SLP anomalies that are connected to the variation of the North Atlantic Subtropical High (NASH). In association with the cold (warm) Caribbean SST anomalies, the atmosphere shows the high (low) SLP anomalies near the Caribbean region that are consistent with the anomalously strong (weak) easterly CLLJ. The CLLJ is also remotely related to the SST anomalies in the Pacific and Atlantic, reflecting that these SST variations affect the NASH. During the winter, warm (cold) SST anomalies in the tropical Pacific correspond to a weak (strong) easterly CLLJ. However, this relationship is reversed during the summer. This is because the effects of ENSO on the NASH are opposite during the winter and summer. The CLLJ varies in phase with the North Atlantic Oscillation (NAO) since a strong (weak) NASH is associated with a strengthening (weakening) of both the CLLJ and the NAO. The CLLJ is positively correlated with the 925-hPa meridional wind anomalies from the ocean to the United States via the Gulf of Mexico. Thus, the CLLJ and the meridional wind carry moisture from the ocean to the central United States, usually resulting in an opposite (or dipole) rainfall pattern in the tropical North Atlantic Ocean and Atlantic warm pool versus the central United States.  相似文献   

14.
This analysis compares the climate impacts over North America during winter associated with various El Niño–Southern Oscillation (ENSO) indices, including the Niño 3.4 index, the leading tropical Pacific outgoing longwave radiation and sea surface temperature (OLR-SST) covariability, and the eastern Pacific (EP) and central Pacific (CP) types of ENSO identified from both partial-regression–empirical orthogonal function (EOF) and regression–EOF approaches. The traditional Niño 3.4 SST index is found to be optimal for monitoring the tropical Pacific OLR-SST covariability and for the tropical SST impact on North America. The circulation anomalies associated with the Niño 3.4 index project on both the Pacific/North American (PNA) and Tropical/Northern Hemisphere (TNH) patterns. The ENSO associated with the PNA tends to come from both the EP and CP ENSOs, whereas that associated with the TNH comes more from the EP ENSO. The variability of ENSO significantly affects North American temperature and precipitation, as well as temperature and precipitation extremes. For either the EP or CP types of ENSO, qualitatively similar patterns of climate and climate extreme anomalies are apparent associated with the indices identified by the two EOF approaches, with differences mainly in the anomalous amplitude. The anomalous patterns are generally field significant over North America for the EP ENSO but not field significant for the CP ENSO.

The circulation anomalies associated with ENSO are reinforced and maintained by synoptic vorticity fluxes in the upper troposphere. The anomalous surface temperature is mainly determined by the anomalies in surface radiative heating in the face of upward surface longwave radiative damping. The precipitation anomalies are supported by the vertically integrated moisture transport. The differences in atmospheric circulation, surface temperature, and precipitation among the various ENSO indices, including the intensity and spatial structure of the fields, can be attributed to the corresponding differences in synoptic eddy vorticity forcing, surface radiative heating, and vertically integrated moisture transport.  相似文献   


15.
16.
徐全倩  徐海明  马静 《大气科学》2018,42(6):1191-1207
采用高分辨率卫星和再分析资料,利用涡旋探测技术、滤波和合成分析等方法,对夏季北太平洋副热带地区中尺度海洋涡旋与大气的耦合关系进行了分析。结果表明:在日时间尺度上,海洋涡旋的海表温度(Sea SurfaceTemperature,简称SST)与海表风速之间不仅存在同位相的正相关关系,还存在反位相的负相关关系,即在涡旋这种中尺度上既存在海洋对大气的强迫,也存在大气对海洋的强迫。海表风速与SST同位相时,对暖(冷)涡来说,向上(下)的净热通量增强,云和降水增多(减少);其海水温度异常和海流旋度较强,暖(冷)涡较为深厚,一定程度上表明了海洋对大气的强迫。海表风速与SST反位相时,对暖(冷)涡而言,当其处在正(负)位势高度异常、中低层相对湿度较小(大)、气温较高(低)的大气配置下,海表风速较小(大);同时向下(上)净热通量增强,云和降水减少(增多);涡旋海水温度异常和海流旋度较弱,这种暖(冷)涡较为浅薄;表明晴空(阴雨)条件下有利于暖(冷)涡的维持,一定程度上反映了大气对海洋的强迫作用。  相似文献   

17.
本文利用1951—1980年逐季的平均值资料(共120个季)讨论了北方涛动和与其相联系的北太平洋海温与北半球海平面气压场、500hPa位势高度场遥相关的基本结构,并与南方涛动和赤道东太平洋海温的结果进行了对比分析.发现北太平洋Namias海区和加利福尼亚海流区海温的变化与北方涛动具有很密切的联系;北方涛动和这两个海区的海温同北半球中高纬度大气环流特别是PNA型和NAO型环流异常存在明显的遥相关关系;南方涛动和赤道太平洋海温同WP型或NPO型环流异常关系比较密切,而与PNA型和NAO型的关系不如北方涛动和Namias海区及加利福尼亚海流区海温的显著.  相似文献   

18.
Recent studies have shown that the Madden–Julian Oscillation (MJO) impacts the leading modes of intraseasonal variability in the northern hemisphere extratropics, providing a possible source of predictive skill over North America at intraseasonal timescales. We find that a k-means cluster analysis of mid-level geopotential height anomalies over the North American region identifies several wintertime cluster patterns whose probabilities are strongly modulated during and after MJO events, particularly during certain phases of the El Niño-Southern Oscillation (ENSO). We use a simple new optimization method for determining the number of clusters, k, and show that it results in a set of clusters which are robust to changes in the domain or time period examined. Several of the resulting cluster patterns resemble linear combinations of the Arctic Oscillation (AO) and the Pacific/North American (PNA) teleconnection pattern, but show even stronger responses to the MJO and ENSO than clusters based on the AO and PNA alone. A cluster resembling the positive (negative) PNA has elevated probabilities approximately 8–14 days following phase 6 (phase 3) of the MJO, while a negative AO-like cluster has elevated probabilities 10–20 days following phase 7 of the MJO. The observed relationships are relatively well reproduced in the 11-year daily reforecast dataset from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). This study statistically links MJO activity in the tropics to common intraseasonal circulation anomalies over the North American sector, establishing a framework that may be useful for improving extended range forecasts over this region.  相似文献   

19.
Interdecadal climate variability in the subpolar North Atlantic   总被引:1,自引:0,他引:1  
The statistical relationships between various components of the subpolar North Atlantic air-sea-ice climate system are reexamined in order to investigate potential processes involved in interdecadal climate variability. It is found that sea surface temperature anomalies concentrated in the Labrador Sea region have a strong impact upon atmospheric sea level pressure anomalies over Greenland, which in turn influence the transport of freshwater and ice anomalies out of the Arctic Ocean, via Fram Strait. These freshwater and ice anomalies are advected around the subpolar gyre into the Labrador Sea affecting convection and the formation of Labrador Sea Water. This has an impact upon the transport of North Atlantic Current water into the subpolar gyre and thus, also upon sea surface temperatures in the region. An interdecadal negative feedback loop is therefore proposed as an internal source of climate variability within the subpolar North Atlantic. Through the lags associated with the correlations between different climatic components, observed horizontal advection time scales, and the use of Boolean delay equation models, the time scale for one cycle of this feedback loop is determined to have a period of about 21 years.  相似文献   

20.
Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901–1930, 1931–1960, 1961–1990 to 2001–2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991–2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981–1990, 1991–2000, and 2001–2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong spatiotemporal fluctuations in explanatory power of the different indices over all German counties and the three time periods. Over the 30 years, yield deviations were increasingly well correlated with heat and drought-related indices, with the number of days with maximum temperature above 25 °C during anthesis showing a sharp increase in explanatory power over entire Germany in the final 2001–2010 period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号