首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
The chemistry of both nitrogen and sulfur presents interesting problems in comets.In this paper, we use a model of cometary comae with gas-phase chemical kineticsand gas dynamics to predict molecular abundances in the inner coma region for twoof the brightest comets in the past 20 years, Hyakutake (C/1996 B2) and Hale–Bopp(C/1995 O1). In this progress report we concentrate on the gas-phase chemistry of thenitrogen sulfide (NS) radical at a heliocentric distance of 1 AU to study the abundanceof NS using a detailed photo and chemical reaction network with over 100 species andabout 1000 reactions. The results are compared with recent observations of CometHale–Bopp and reveal that conventional gas-phase reactions schemes do not produceNS in sufficient quantities to explain the observations. We plan to continue therefinement of the model to improve agreement with observational constraints.  相似文献   

2.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust ‘envelopes’ is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

3.
Abstract— Recent developments in our understanding of comets provide insights into the topic of cometary meteorites. These developments include the identification of comet-asteroid transition objects (such as 4015 Wilson-Harrington and 3200 Phaethon), information on the composition of cometary solids, and new ideas on the collisional history of Jupiter-family comets. In this work, we revisit this question, and we conclude that comets do indeed yield macroscopic meteorites, which either have not been found or have not been recognized. We also consider the expected characteristics of cometary meteorites, with an emphasis on those that may help identify and differentiate them from other types of meteorites. If cometary meteorites have preserved the main characteristics of cometary dust, the mineralogy would be dominated by highly unequilibrated anhydrous silicates, and the chemistry would be nearly chondritic but with a high abundance of C and N. On the other hand, if an unknown process produced extensive aqueous alteration in the material that formed cometary meteorites, they would resemble (or could even be) CI carbonaceous chondrites. We do not expect cometary meteorites to have chondrules. So far, no single meteorite looks unequivocally cometary. However, we have identified xenoliths in ordinary chondrite regolith breccias that meet most of our criteria for a cometary origin and deserve further study.  相似文献   

4.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust envelopes is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

5.
“Water and related chemistry in the Solar System” is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution, the evolution and the origin of water in Mars, the outer planets, Titan, Enceladus and the comets. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System species, will be measured for the first time in a Jupiter-family comet. A comparison with existing and new measurements of D/H in Oort-cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in giant planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostic of Mars’ atmosphere evolution, will be accurately measured in H2O and CO. The role of water vapor in Mars’ atmospheric chemistry will be studied by monitoring vertical profiles of H2O and HDO and by searching for several other species (and CO and H2O isotopes). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the outer planets (interplanetary dust particles, cometary impacts, and local sources). In addition to these inter-connected objectives, serendipitous searches will enhance our knowledge of the composition of planetary and cometary atmospheres.  相似文献   

6.
The large differences in drift velocities between the solar wind protons and the picked-up ions of cometary origin cause the Alfvén waves (among others) to become unstable and generate turbulence. A self-consistent treatment of such instabilities has to take into account that these cometary ions affect the solar wind plasma in a decisive way. With the help of a previously developed formalism one finds the correct Alfvén instability criterion, which is here nondispersive, in contrast to recent calculations where the cometary ions are treated as a low-density, high-speed, and non-neutral beam through an otherwise undisturbed solar wind. The true bulk speed of the combined solar wind plus cometary ion plasma clearly shows the mass-loading and deceleration of the solar wind near the cometary nucleus, indicating a bow shock. The instability criterion is also used to determine the region upstream where the Alfvén waves can be unstable, based upon recent observations near comet Halley.  相似文献   

7.
Abstract— Meteor science, aeronomy, and meteoritics are different disciplines with natural interfaces. This paper is an effort to integrate the chemistry and mineralogy of collected interplanetary dust particles (IDPs), micrometeorites, and meteorites with meteoric data and with atmospheric metal abundances. Evaporation, ablation, and melting of decelerating materials in the Earth's atmosphere are the sources of the observed metal abundances in the upper atmosphere. Many variables ultimately produce the materials and phenomena we can analyze, such as different accretion and parent‐body histories of incoming extraterrestrial materials, different interactions of meteors with the Earth's middle atmosphere, meteor data reduction, and complex chemical interactions of the metals and ions with the ambient atmosphere. The IDP‐like and unequilibrated ordinary chondrite matrix materials are reasonable sources for observed meteoric and atmospheric metals. The hypothesis of hierarchical dust accretion predicts that low, correlated refractory element abundances in cometary meteors may be real. It implies that the CI or cosmic standard is not useful to appreciate the chemistry of incoming petrologically heterogeneous cometary matter. The quasi steady‐state metal abundances in the lower thermosphere and upper mesosphere are derived predominantly from materials with cometary orbital characteristics and velocities such as comets proper and near‐Earth asteroids. The exact influence of atmospheric chemistry on these abundances still needs further evaluation. Metal abundances in the lower mesosphere and upper stratosphere region are mostly from materials from the asteroidal belt and the Kuiper belt.  相似文献   

8.
Photometric measurements of photographic images of comet C/1987 P1 Bradfield have been carried out with a flat-bed scanner equipped with a slide module. Lengthwise and transverse photometric profiles of the cometary plasma tail have been obtained. Magnetic field induction and some other physical characteristics of the cometary plasma tail observed in November 1987 have been estimated with the use of the diffusion model for a cometary tail by Shul’man and Nazarchuk (1968). It has been shown that the scanned images of comets can be used for estimating the physical characteristics of cometary tails.  相似文献   

9.
Isotopic abundance ratios are excellently suited to probe the origin of solar system matter. We review the recent measurements of the isotopic ratios of the light elements (D/H, 12C/13C, 16O/18O, 14N/15N, 32S/34S) in cometary dust and gas and discuss briefly their implications. Special emphasis will be put on the determinations and progress performed in the field over the past years thanks to high resolution spectroscopy of cometary comae obtained with the ESO Very Large Telescope. Future perspectives from space missions and ground-based observations with new large and extremely large telescopes operating in the optical, infrared and submillimeter wavelengths will be presented.  相似文献   

10.
《Planetary and Space Science》1999,47(6-7):773-779
The recent passage of the Hale–Bopp (C/1995 O1) comet has provided the first opportunity to analyse the infrared spectral properties of a bright comet both from the ground and by the ISO space observatory. Previous works have already been dedicated to study the potential candidates to reproduce the cometary feature at 10 μm observed for different comets. We have applied a similar approach to compare the Hale–Bopp (C/1995 O1) spectra with laboratory data. The best fit has been obtained by using a mixture of crystalline Mg-rich olivine (forsterite), amorphous olivine and amorphous carbon grains. Some constraints on the possible cometary grain types derive from our simulation. Aggregates of submicron particles, composed of amorphous and crystalline olivine and amorphous carbon materials seem to be compatible with the cometary emission. Moreover, the possibility of fitting observational data on a wide IR spectra range, offered by ISO, provides interesting hints about the size distribution of grains responsible for the detected features.  相似文献   

11.
Comets are probably the most primitive bodies of the solar system, and they participated in the early bombardment of the primitive planets. Consequently, the knowledge of their composition can play a key role in our understanding of the solar system formation, the origin of the planetary volatile constituents, and the origin of the organics implied in terrestrial prebiotic chemistry. However, we still do not have any direct information about the molecular composition of the cometary nucleus. This is why the COmetary SAmpling and Composition experiment (COSAC), onboard the surface landing probe of the Rosetta cometary mission, is specifically devoted to the molecular and enantiomeric analysis of a cometary nucleus. This experiment includes a gas chromatograph instrument dedicated to the specific identification and quantification of the general molecular species present in samples collected at the nucleus surface. In order to evaluate the performances of the integrated chromatographic system which was selected for the flight model instrument, experiments were carried out with a laboratory set up that reproduced the flight configuration and mimicked the in situ operating conditions. The obtained results demonstrate the ability for the gas chromatograph to identify a wide range of organic and inorganic volatile compounds, even those present at trace level, within the constrained space operating conditions. The aim of this paper is to present, for the first time, the performances of this system and to discuss the potential role of in situ gas chromatographic measurements in the future cometary, planetological and prebiotic chemistry studies.  相似文献   

12.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

13.
Abstract— Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple's (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy‐conglomerate planetesimals, possibly held together only by self‐gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker‐Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA's Rosetta mission, now en route to comet 67P/Churyumov‐Gerasimenko, will provide that opportunity.  相似文献   

14.
Until cometary matter can be studied in-situ or cometary samples are brought back to Earth for analysis, theoretical models and laboratory studies remain a crucial tool for revealing the nature of cometary matter. Constraints on the nature of the primordial material available for incorporation into comets and other solar system material comes from analysis of data from space-based and ground-based observatories. The structure of the nuclear ice component, which may have coexisting amorphous/crystalline phases and include clathrates and other trapped guest molecules, strongly influences the cometary outgassing properties. This paper reviews laboratory work on ice and carbon aceous compounds and discusses their significance for cometary chemistry. Special emphasis will be given to studies on the thermal processing of ices and their implications for the structure changes and subsequent release of volatiles. We also describe the preliminary results of a model of nuclear outgassing, and discuss how such model scan be used to infer the chemical structure of the nuclearices. Furthermore, we confront cometary data with the analysis of carbonaceous meteorites. Recent laboratory results on volatile compounds and the macro molecular structure of carbonaceous meteorites allow us to investigate the link of small bodies in the Solar System. Until ROSETTA will land on comet Wirtanen and study directly the nuclear composition, laboratory measurements of ice and refractory analogs will — together with the analysis of meteorites —significantly improve our knowledge on the origin and structure ofcomets.  相似文献   

15.
X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.  相似文献   

16.
The icy conglomerate model introduced by Whipple more than 40 years ago has been widely accepted in cometary science because it is able to describe numerous cometary phenomena. In this model comets are described as a conglomerate of ices and dust where the ices represent the major component. However, some recent observations seem to favour dust rich comets. The purpose of this paper is to summarize the observational facts supporting the dominance of refractories in comets and to discuss the consequences of a dust dominated nucleus for cometary physics.  相似文献   

17.
The icy conglomerate model introduced by Whipple more than 40 years ago has been widely accepted in cometary science because it is able to describe numerous cometary phenomena. In this model comets are described as a conglomerate of ices and dust where the ices represent the major component. However, some recent observations seem to favour dust rich comets. The purpose of this paper is to summarize the observational facts supporting the dominance of refractories in comets and to discuss the consequences of a dust dominated nucleus for cometary physics.  相似文献   

18.
In this paper we have endeavored to critically evaluate our present understanding of cometary atmospheres. Following a brief introduction of the significance of the study of cometary atmospheres (Section 1), the relevant photometric and spectroscopic observations are summarized in Section 2.The interaction with the solar radiation, with regard to both the excitation of the observed species as well as the dissociation of stable molecules evaporating from the nucleus, is considered in Sections 3 and 4. The gas phase chemistry likely to take place in the dense inner coma is next considered in Section 5.The exospheric and hydrodynamic models of the expanding cometary atmosphere are considered in detail in Section 6, and both their limitations as well as possible improvements are discussed.The observed chemical composition of the neutral atmosphere and the inferred chemical composition of the volatile component of the nucleus, together with possible variations between different classes of comets is next considered in Section 7, and their possible cosmogonic significance is discussed.In conclusion, some of the important directions in which future research should progress, in order to provide more complete and secure knowledge of cometary atmospheres, are stressed (Section 8).Astrophysics and Space Science Review Paper.  相似文献   

19.
Comets seem to be composed of matter, which is supposed to have the same molecular composition as protosolar nebula. Although there are no unbiased evidence that cometary nuclei retain the molecular composition inherited from the protosolar cloud, the observed properties of comets indicate that there is at least a resemblance between cometary composition and the material properties of dense interstellar clouds. Therefore the origin of comets could be searched in the cold stages of the protosolar nebula and molecular abundances of grain mantles in this nebula may be similar to those in the cometary dust. It is suggested that comets may contain pristine, virtually unaltered protosolar material and their study might be very relevant way to more information about processes in early stages of the solar nebula. Our knowledge about composition of the cometary nucleus is still relatively scarce, but we can partly deduce it from data obtained either by ground-based spectroscopy or by in situ mass spectrometry from space experiments. Most important were the discovery of fluffy CHON particles composed partly or even completely from compounds containing light elements. No consensus concerning the presence of interstellar pristine matter in comet has been reached from various approaches to determine the relationship between comets and interstellar grains. Most of these studies are based on infrared spectroscopy. Another method is the comparison on the chemical models of the protosolar nebula with the volatile compounds of the cometary nuclei. Both gas-phase and grain-surface chemistry are considered and initial gas-phase atomic abundances are assumed to be protosolar. The cometary matter is certainly not identical with the typical material of dense interstellar cool dense clouds, but it is closer to it than any other type of matter in solar system so far accessible to us. The data from comets combined with models of chemical evolution of matter in environment similar as prevailed the early stage of presolar nebula may at least impose constrains on the condition for comet formation. Here presented study is a preliminary contribution to such studies.  相似文献   

20.
R.L. Hudson  M.H. Moore 《Icarus》2004,172(2):466-478
Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH3CN, CH3CH2CN, CH2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH3)2CHCN and (CH3)3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH3CN, CH3CH2CN, and (CH3)2CHCN also formed ketenimines. In the presence of H2O, no isonitriles were detected but rather the cyanate ion (OCN) was seen in all cases. Although isonitriles, ketenimines, and OCN were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号