首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable, colloidal sols were prepared from the addition of methanolic (Mg(OCH3)2) to one equivalent of H2O2 in methanol. Fluoride was quantitatively incorporated by treatment of these sols with HF. Stable sols were obtained when sols, prepared from the acid catalyzed hydrolysis of tetramethylorthosilicate (TMOS), were combined with these fluoridated magnesium sols. Solvent removal gave xerogels, which were calcined, and treated with stoichiometric quantities of water at 750 °C and 1.6 kbar. The resulting products were high-purity, single-phase talcs with fluoride substitution as high as 75 mole percent; the fluoride substitution is higher than any previously reported. Powder XRD analysis showed a non-linear decrease in d(060) spacing with increasing fluoride substitution, which is attributed to a decrease in the b-dimension of talc when fluoride replaced hydroxide. FTIR spectroscopy showed a non-linear decrease in vO-H in talc with increasing fluoride substitution, which was attributed to an increase in hydrogen bonding of the OH groups and an increase in the electronegativity of the octahedral layer in talc with increasing fluoride substitution. The thermal stability of the talcs was studied using DT and TG, powder XRD, FTIR, and fluoride ion-selective electrode analyses. Synthetic talc without fluoride decomposed at 860 °C, whereas talc with 68% fluoride substitution showed essentially no decomposition when heated to 1060 °C. When heated to 1200 °C, 68% fluoride substituted talc formed amorphous material, enstatite, protoenstatite, norbergite, and chondrodite. The upper stability temperature of talc, taken as the maximum rate of the first endothermic event in its DTA profile, was dependent on the extent of fluoride substitution. Talc with 100% fluoride substitution is predicted to be stable up to ~1100°C.  相似文献   

2.
Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/ nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276-345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation.  相似文献   

3.
应用FTIR-SEM研究一类合成欧珀的微结构及其变彩成因机制   总被引:1,自引:1,他引:0  
近些年来,相关人工合成欧泊的研究工作主要聚焦于天然与合成欧泊的鉴别与筛选,而相关合成欧泊的微结构、变彩机制及其中水的赋存状态的深入研究鲜见报道。本文通过傅里叶变换红外光谱(FTIR)、场发射扫描电镜(FE-SEM)对一类合成欧泊的微结构、结构缺陷进行较系统的研究。同时,结合对样品的热处理就该合成欧泊体色、变彩机制及其中水的赋存状态作了初步探讨。结果表明:该样品的红外光谱中,在约2900 cm~(-1)、1737 cm~(-1)处出现合成欧泊特征吸收,且在4000~6000 cm-1波段,合成欧泊相比天然欧泊的吸收峰更为复杂。合成欧泊的颜色由体色与变彩两者共同构成,该体色与存在于其微结构中准球状、粒径约205 nm的二氧化硅颗粒的间隙填充物直接关联,且在热处理条件下随着间隙物的析出而渐退。同时,该类合成欧泊的变彩归因于结构致色并由其内部SiO_2颗粒周期性排列而构成的三维的光子带隙结构所致。此外,在欧泊的微观结构发生重构前,变彩所呈现的颜色主要由准球状二氧化硅颗粒粒径与间隙填充物决定。  相似文献   

4.
This study examined commercial talc deposits in the U.S. and their amphibole-asbestos content. The study found that the talc-forming environment directly influenced the amphibole and amphibole-asbestos content of the talc deposit. Large talc districts in the U.S. have mined hydrothermal talcs that replaced dolostone. Hydrothermal talcs, created by siliceous fluids heated by magmas at depth, consistently lack amphiboles as accessory minerals. In contrast, mineable talc deposits that formed by contact or regional metamorphism consistently contain amphiboles, locally as asbestiform varieties. Examples of contact metamorphic deposits occur in Death Valley, California; these talc-tremolite deposits contain accessory amphibole-asbestos. Talc bodies formed by regional metamorphism always contain amphiboles, which display a variety of compositions and habits, including asbestiform. Some industrial mineral deposits are under scrutiny as potential sources of accessory asbestos minerals. Recognizing consistent relations between the talc-forming environment and amphibole-asbestos content may be used in prioritizing remediation or monitoring of abandoned and active talc mines.  相似文献   

5.
Three natural hematites, α-Fe2O3, from the region of Elba have been investigated by means of 57Fe Mössbauer spectroscopy at variable temperatures between 80 and 400K. The samples were selected on the basis of their different morphology as observed from powder X-ray diffraction and transmission electron microscopy. The mean crystallite diameters (MCD) along [104] are 1000, 280 and 40 nm respectively. Energy-dispersive analyses of X-rays revealed the presence of minor amounts of Si impurities in those two hematites having the largest MCD. All three hematites show the coexistence at low temperatures of antiferromagnetic-like (AF) and weakly-ferromagnetic-like (WF) spin states. The saturation values of the AF and WF magnetic hyperfine fields and quadrupole shifts have been determined, from which conclusions are drawn concerning the spin structure in relation to the crystallinity of the samples. The variations of the hyperfine parameters in the Morin-transition region indicate a gradual reorientation of both AF and WF spins towards the basal plane. As expected, the Morin transition itself is affected by the particle size. The two hematites exhibiting the largest particle dimensions still show an AF contribution for T>270K. It is suggested, and argued that this unusual behaviour is due to the presence of Si4+, and hence Fe2+, in the lattice. The characteristic Mössbauer temperatures and the intrinsic isomer shifts were evaluated from the temperature variation of the observed isomer shifts. Both parameters are not significantly affected by the morphology and are in excellent agreement with data obtained for synthetic hematites.  相似文献   

6.
The sintering behavior of olivine and olivine-basalt aggregates has been examined at temperatures near 1,300° C. Experimental factors contributing to rapid sintering kinetics and high-density, fine-grained specimens include: (i) the uniform dispersion of basalt throughout the specimen, (ii) a very fine, uniform particle size for the olivine powder, (iii) oxygen fugacities near the high P O2 end of the olivine stability field, and (iv) rapid heating to the sintering temperature. Olivine-basalt specimens prepared from olivine particles coated with a synthetic basalt achieve chemical and microstructural equilibrium more rapidly, as well as produce higher density and finer grain-sized aggregates, than do specimens prepared by mechanical mixing of olivine and natural basalt powders. The grain boundary mobility for olivine, measured for olivine-basalt aggregates which have undergone secondary recrystallization, is on the order of 2×10?15 (m/s)/(N/m2) in the temperature range 1,300–1,400° C. Solution-precipitation (pressure-solution) processes make an important contribution to the development of the microstructure in olivine-basalt aggregates.  相似文献   

7.
滑石的颗粒粒径、形貌、晶型等对其应用的实效性、终端产品的性能产生极大影响,目前主要研究其表面改性,而有关微观形貌及晶体结构研究较少。本文利用X射线荧光光谱、X射线衍射分析、红外光谱、粒度分析仪结合高分辨场发射扫描电镜(FE-SEM)技术对辽宁滑石粉在高强度机械力研磨作用下的微形貌和晶体结构变化特征进行系统研究。结果表明滑石粉原矿混合物中MgO与SiO2的分子个数比约为0.45,该数值明显低于纯滑石粉晶体中MgO与SiO2的分子个数比0.75。此类滑石为典型的单斜晶系,研磨作用使滑石粉由晶态转变为非晶态结构,其层状结构的有序化和键合作用发生了明显的变化。滑石粒度随研磨时间变化呈现减小-增大-减小的循环过程。研磨后粉体形貌存在差异,细化的小颗粒粉体因团聚而呈"准球体",且随着研磨的进行出现细化-团聚-细化的反复过程。此结论对于滑石的深加工与应用及其相关矿物粉体的研究具有一定的参考价值。  相似文献   

8.
We have used room temperature and cryogenic 57Fe Mössbauer spectroscopy, powder X-ray diffraction (pXRD), mineral magnetometry, and transmission electron microscopy (TEM), to study the synthetic precipitation of hydrous ferric oxides (HFOs) prepared either in the absence (abiotic, a-HFO) or presence (biotic, b-HFO) of nonmetabolizing bacterial cells (Bacillus subtilis or Bacillus licheniformis, ∼108 cells/mL) and under otherwise identical chemical conditions, starting from Fe(II) (10−2, 10−3, or 10−4 mol/L) under open oxic conditions and at different pH (6-9). We have also performed the first Mössbauer spectroscopy measurements of bacterial cell wall (Bacillus subtilis) surface complexed Fe, where Fe(III) (10−3.5-10−4.5 mol/L) was added to a fixed concentration of cells (∼108 cells/mL) under open oxic conditions and at various pH (2.5-4.3). We find that non-metabolic bacterial cell wall surface complexation of Fe is not passive in that it affects Fe speciation in at least two ways: (1) it can reduce Fe(III) to sorbed-Fe2+ by a proposed steric and charge transfer effect and (2) it stabilizes Fe(II) as sorbed-Fe2+ against ambient oxidation. The cell wall sorption of Fe occurs in a manner that is not compatible with incorporation into the HFO structure (different coordination environment and stabilization of the ferrous state) and the cell wall-sorbed Fe is not chemically bonded to the HFO particle when they coexist (the sorbed Fe is not magnetically polarized by the HFO particle in its magnetically ordered state). This invalidates the concept that sorption is the first step in a heterogeneous nucleation of HFO onto bacterial cell walls. Both the a-HFOs and the b-HFOs are predominantly varieties of ferrihydrite (Fh), often containing admixtures of nanophase lepidocrocite (nLp), yet they show significant abiotic/biotic differences: Biotic Fh has less intraparticle (including surface region) atomic order (Mössbauer quadrupole splitting), smaller primary particle size (magnetometry blocking temperature), weaker Fe to particle bond strength (Mössbauer center shift), and no six-line Fh (6L-Fh) admixture (pXRD, magnetometry). Contrary to current belief, we find that 6L-Fh appears to be precipitated directly, under a-HFO conditions, from either Fe(II) or Fe(III), and depending on Fe concentration and pH, whereas the presence of bacteria disables all such 6L-Fh precipitation and produces two-line Fh (2L-Fh)-like biotic coprecipitates. Given the nature of the differences between a-HFO and b-HFO and their synthesis condition dependences, several biotic precipitation mechanisms (template effect, near-cell environment effect, catalyzed nucleation and/or growth effect, and substrate-based coprecipitation) are ruled out. The prevailing present view of a template or heterogeneous nucleation barrier reduction effect, in particular, is shown not to be the cause of the large observed biotic effects on the resulting HFOs. The only proposed mechanism (relevant to Fh) that is consistent with all our observations is coprecipitation with and possible surface poisoning by ancillary bacteriagenic compounds. That bacterial cell wall functional groups are redox active and the characteristics of biotic (i.e., natural) HFOs compared to those of abiotic (i.e., synthetic) HFOs have several possible biogeochemical implications regarding Fe cycling, in the photic zones of water columns in particular.  相似文献   

9.
The colloidal fractions of various particle sizes were separated from the samples of groundwater in the area of radioactive contamination nearby Obninsk (Kaluga region, Russia). The primary component of the radioactive contamination is 90Sr isotope. The colloidal particles were separated from the samples of groundwater by means of ultrafiltration through membranes of 200, 100, and 25 nm pore sizes. The chemical composition of particle surfaces in each of the fractions was determined using X-ray photoelectron spectroscopy. The structure of particles was determined by the changes in the surface composition after the removal of outer layers of particles by etching with argon ions to a depth of 100 Å. It was found that the particles are constituted by inorganic cores mainly of montmorillonite and iron metahydroxide and a broken covering of humic acids. It was shown that about 50% of 90Sr is transferred by groundwater with colloidal particles of over 25 nm in size.  相似文献   

10.
Sodic amphiboles in high pressure and ultra-high pressure (UHP) metamorphic rocks are complex solid solutions in the system Na2O–MgO–Al2O3–SiO2–H2O (NMASH) whose compositions vary with pressure and temperature. We conducted piston-cylinder experiments at 20–30?kbar and 700–800?°C to investigate the stability and compositional variations of sodic amphiboles, based on the reaction glaucophane=2jadeite+talc, by using the starting assemblage of natural glaucophane, talc and quartz, with synthetic jadeite. A close approach to equilibrium was achieved by performing compositional reversals, by evaluating compositional changes with time, and by suppressing the formation of Na-phyllosilicates. STEM observations show that the abundance of wide-chain structures in the synthetic amphiboles is low. An important feature of sodic amphibole in the NMASH system is that the assemblage jadeite–talc?±?quartz does not fix its composition at glaucophane. This is because other amphibole species such as cummingtonite (Cm), nyböite (Nyb), Al–Na-cummingtonite (Al–Na-Cm) and sodium anthophyllite (Na-Anth) are also buffered via the model reactions: 3cummingtonite?+?4quartz?+?4H2O=7talc, nyböite?+?3quartz=3jadeite?+?talc, 3Al–Na-cummingtonite + 11quartz + 2H2O=6jadeite + 5talc, and 3 sodium anthophyllite?+?13quartz?+?4H2O=3 jadeite + 7talc. We observed that at all pressures and temperatures investigated, the compositions of newly grown amphiboles deviate significantly from stoichiometric glaucophane due to varying substitutions of AlIV for Si, Mg on the M(4) site, and Na on the A-site. The deviation can be described chiefly by two compositional vectors: [NaAAlIV]<=>[□ASi] (edenite) toward nyböite, and [Na(M4)AlVI]<=>[Mg(M4)MgVI] toward cummingtonite. The extent of nyböite and cummingtonite substitution increases with temperature and decreases with pressure in the experiments. Similar compositional variations occur in sodic amphiboles from UHP rocks. The experimentally calibrated compositional changes therefore may prove useful for thermobarometric applications.  相似文献   

11.
《Applied Geochemistry》1998,13(1):43-47
Although 14C occurs naturally, it is also a waste product of the nuclear industry, and can be important because of its long half-life, high mobility as an anion, and ready incorporation into biota. Some aqueous inorganic species are anionic with migration minimally retarded by most geological and soil materials. Substantial retardation is expected when calcite is present, but there are few data to quantify this effect. The present study measured partition coefficient values, Rd (concentration on solids divided by concentration in liquids), of 8–85 l kg−1 for a series of calcite materials and for a carbonated soil. In contrast, Rd was zero for montmorillonite. The series of calcite materials varied in particle size. In order to investigate the effects of particle size, dissolution and degassing of 14C and 12C were monitored as pH was slowly decreased. The change in pH with addition of acid was strongly affected by particle size, as expected, but there was no systematic effect of particle size on the relative dissolution rates of 14C vs 12C, or on Rd. Apparently, surface area was not a limiting factor in the interaction of 14C with these materials. The 14C in soil behaved most like the very fine calcite, indicating that the specific surface of the soil carbonate was similar to that of the very fine calcite.  相似文献   

12.
A depth- and particle size-specific analysis of soil organic carbon (SOC) and its isotopic composition was undertaken to investigate the effects of soil texture (or particle size) on the depth profile of stable carbon isotopic composition of SOC (δ13CSOC) in two tropical soils. Depth-specific samples from two soil profiles of markedly different texture (coarse grained and fine grained) were separated into particle size classes and analyzed for the (mass/mass) concentration of SOC (C) and δ13CSOC. Within 1 m of the soil surface, δ13CSOC in the coarse-textured soil increases by 1.3 to 1.6‰, while δ13CSOC from the fine-textured soil increase by as much as 3.8 to 5.5‰. This increasing depth trend in the coarse-textured soil is approximately linear with respect to normalized C, while the increase in the fine-textured soil follows a logarithmic function with respect to normalized C. A model of Rayleigh distillation describing isotope fractionation during decomposition of soil organic matter (SOM) accounts for the depth profile of δ13CSOC in the fine-textured soil, but does not account for the depth profile observed in the coarse-textured soil despite their similar climate, vegetation, and topographic position. These results suggest that kinetic fractionation during humification of SOM leads to preferential accumulation of 13C in association with fine mineral particles, or aggregates of fine mineral particles in fine-textured soils. In contrast, the coarse-textured soil shows very little applicability of the Rayleigh distillation model. Rather, the depth profile of δ13CSOC in the coarse-textured soil can be accounted for by mixing of soil carbon with different isotopic ratios.  相似文献   

13.
14.
Image-based soil particle size and shape characterization relies on computer methods to process and analyze the images. For contacting particles spread on a flat surface this requires delineation of particle boundaries through shape-based image segmentation. The traditional method using watershed analysis fails for particles that have constrictions (are peanut-shaped). The oversegmentation interprets such particles as being two, thereby underestimating the long particle dimension by about 50% and overestimating particle sphericity by about a factor of two. This paper presents a solution to the problem of oversegmentation through morphologic reconstruction. The key to this improvement is distinguishing the necks in peanut shaped particles from actual contacts between particles. A parameter α is defined to quantify the necks and contacts. Approximately 220,000 particles in a range of 2.0–35.0 mm having various shapes and angularities were studied to find typical α values for necks and contacts. An algorithm is proposed to correct the oversegmentation based on α. The results show that this improved watershed analysis accurately segments sand particles at contacts while preserving the continuity of peanut shaped particles. Example lab tests demonstrate the significance of the problem and its solution.  相似文献   

15.
天然紫晶与合成紫晶的鉴别是国内外珠宝鉴定实验室的一个难题,前人主要从双晶、色带、包裹体、红外吸收光谱特征等方面开展了研究。在利用红外光谱鉴别天然紫晶与合成紫晶时,不同的学者尚对3595cm-1或3543cm-1吸收峰作为诊断性还是指示性的判据存在不同认识。本文系统采集了典型的天然紫晶与合成紫晶样品,研究了利用红外光谱测试技术鉴别天然紫晶与合成紫晶的局限性,并尝试将偏振拉曼光谱应用于紫晶成因鉴别。结果表明:利用3595cm-1、3543cm-1红外吸收峰进行紫晶鉴别仅具有指示性意义,不能作为决定性的判定依据,偏振拉曼光谱可作为重要的补充。天然紫晶的偏振拉曼光谱(偏振方向:HH)均出现400cm-1的拉曼峰,而该峰在合成紫晶偏振拉曼光谱中缺失;合成紫晶的偏振拉曼光谱(偏振方向:HH)均具有795cm-1、448cm-1的拉曼峰,而这两个峰在天然紫晶偏振拉曼光谱中缺失。偏振拉曼光谱产生差异的原因可能与天然紫晶和合成紫晶内部晶格变形程度的不同有关。本文揭示的400cm-1、448cm-1和795cm-1偏振拉曼峰可作为鉴别紫晶成因的新依据。  相似文献   

16.
In estuaries, organic coatings play an important role in the aggregation of mineral particles. Particles acquire adhesive surfaces through the activities of bacteria and microalgae in the sediment and water column. Eventually, they may become incorporated into larger aggregates and structures, such as tubes, constructed by infaunal benthic animals. Where these structures are large enough, and the adhesive bonds between particles strong enough, individual particles may remain in place at bed shear stresses otherwise strong enough to cause sediment transport. This study examined the aggregation of particles during tube building by the ubiquitous tanaid crustaceanLeptochelia dubia. Particle size selection and rates of tube building were determined as functions of animal size, temperature, and the presence or absence of bacteria and microalgae. These data were used to model seasonal patterns of sediment binding by a population ofL. dubia in Yaquina Bay, Oregon, taking into account seasonal changes in sizes and abundance of animals. Rates of tube building (mass of sediment per day) increased with animal size, but temperature had no effect. The model indicated that the field population ofL. dubia bound sediment into tubes at a gross rate of 350 g m?2 d?1, averaged over a 2-yr period. Seasonally, gross rates of tube building were predicted to range from 70 g m?2 d?1 (during late winter-early spring) to 600 g m?2 d?1 (during autumn). When constructing tubes from sterile sediments, small animals selected silt-sized particles while large animals discriminated against these particles. The presence of microbes in sediments tended to reduce particle selectivity.  相似文献   

17.
A series of naturally occurring ferrihydrites sampled from an acid mine drainage environment were characterized and compared with synthetic 2-line ferrihydrite using high energy X-ray total scattering and pair distribution function analysis, Scanning Transmission X-ray Microscopy (STXM), Transmission Electron Microscopy (TEM), BET N2 surface area measurements, and chemical extractions in order to place constraints on their structural and physical properties as a function of composition. Overall, the short- and intermediate-range ordering of the natural samples is comparable to synthetic ferrihydrite. However, with increasing Al, Si, and organic matter contents, a decrease in particle size and an increase in structural disorder were observed. Silica is suspected to have a pronounced effect on the crystallinity of ferrihydrite as a result of its inhibitory effect on Fe polymerization and particle growth, and it is likely complexed at the surfaces of ferrihydrite nanoparticles. Aluminum, on the other hand may substitute for Fe3+ in natural ferrihydrite. Organic matter is pervasive and intimately associated with ferrihydrite aggregates, and its presence during ferrihydrite precipitation may have contributed to additional structural disorder. The increase in impurity content affects not only the particle size and structural order of ferrihydrite but may also have a significant effect on its surface reactivity.  相似文献   

18.
Suspended particle samples from the Yellow River estuary were sorted into five grain size fractions to explore the effect of grain size distribution on organic matter content and composition. The n-alkanes and PAHs were determined for each size fraction. PAHs and n-alkanes were more abundant in the finer fractions and the loading decreases steadily with increasing of grain size. However, the total n-alkanes or PAHs normalized to organic C were lower in the smaller size fractions than those in the larger size fractions, suggesting n-alkanes or PAHs may be diluted by the addition of organic matter or gradually decreased by degradation in the smaller size fractions. The particulate n-alkanes in the Yellow River estuary consist of a mixture of compounds from terrigenous and riverine biogenic n-alkanes and more biogenic n-alkanes accumulate in finer particles. Particulate PAHs are related to combustion/pyrolysis processes of coal/wood, and the relative contribution of petrogenic PAHs increase with increasing grain size. The total particulate n-alkane and PAH discharges passing the Lijin Station are about 3.94 t d−1 and 0.52 t d−1, respectively. Fine particles (<32 μm) play a significant role in organic matter transfer.  相似文献   

19.
The components of the interfacial surface tension of talc and pyrophyllite were determined by measuring the rate of the capillary rise of a number of liquids through thin, sedimented deposits of the powdered minerals. The rate of capillary rise of a liquid in a powder is related to the contact angle between the liquid and the solid by the Washburn equation. The contact angles thus derived were used to determine the apolar (Lifshitzvan der Waals) component, γ LW , and the polar, electronacceptor and electron-donor parameters, γ and γ ? respectively, of the Lewis acid/base component of the total interfacial surface energy using the Young equation. The values of γ LW for talc and pyrophyllite (31.5 and 34.4 mJ/m2) are slightly smaller than for smectite clay minerals (e.g., the value for hectorite is 39.9 mJ/m2), the electron donor parameter values are roughly comparable for talc and pyrophyllite (γ = 2.4 and 1.7 mJ/m2) as are the values of the electron acceptor parameter (γ ? = 2.7 and 3.2 mJ/m2). The well-known hydrophobicity of these two minerals is due to the remarkably small value (for silicate minerals) of γ ? is normally small or zero for silicates and many other oxides). The small values of both γ and γ ? mean that the Lewis acid/base interactions between talc or pyrophyllite and highly polar water molecules are very weak. In contrast, low-charge smectites, the minerals most similar chemically and structurally to talc and pyrophyllite, have much greater values of γ ? (≥ 30 mJ/m2) and are hydrophyllic.  相似文献   

20.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号