首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U–Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the ore-related porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO2 and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0 ± 5.9 Ma, consistent with the porphyry zircon U–Pb age (36.07 ± 0.43 Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206Pb/238U age of 33.1 ± 1.0 Ma (MSWD = 2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1 Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma.  相似文献   

2.
The large Gacun silver–lead–zinc–copper deposit in Sichuan Province is one of the largest volcanogenic massive sulfide(VMS) deposits in China. The deposit consists of western and central ore bodies, which form a vein–stockwork mineralization system corresponding to hydrothermal channels, and eastern ore bodies, which form an exhalative chemical sedimentary system derived from a brine pool in a submarine basin. The Youre lead–zinc deposit, which is currently under exploration and lies adjacent to the southern part of the Gacun deposit, is characterized by intense silicification and vein–stockwork structures and consists of massive silicified rhyolitic volcanics, banded rhyolitic tuff, and phyllitic sericite tuff. From a comparison of their ore-bearing horizons, the Gacun and Youre deposits have a continuous and stable hanging wall(calcareous slate and overlying andesite) and foot wall(rhyolite–dacite breccia and agglomerate), and the lithologic sequence includes lower intermediate to felsic rocks and upper felsic rocks. Thus, the Youre deposit, which comprises relatively thinly layered low–grade ore, is regarded as forming a southward extension of the Gacun deposit. A further comparison of the structures of the ore-bearing belts between the two deposits suggests that the Youre ore bodies are similar to the western ore bodies of the Gacun deposit. Moreover, the characteristics of fluid inclusions and stable isotopes in the Youre deposit are also similar to those of the western ore bodies of the Gacun deposit. Genetic models of the deposits are proposed for the Gacun–Youre ore district, and massive concealed ore bodies may occcur in the Youre deposit at depths that are similar to those of the eastern ore bodies of the Gacun deposit.  相似文献   

3.
The results of LA–ICP–MS U–Pb analyses of detrital zircons from the Precambrian deposits of Luga–Ladoga monocline are discussed. The age spectra of the zircons separated from the Riphean to Upper Vendian sandstones from the Shotkusa-1 well demonstrate dominance of the Paleo- and Mesoproterozoic grains while the Archaean zircons are subordinate. The Riphean debris sources were local swells of the Northern Ladoga basement. The sequence interval presumably corresponding to the Vasilieostrov Formation (Upper Vendian) has yielded not only Paleo- and Mesoproterozoic zircon ages, but Neoproterozoic as well, implying a Timanide provenance: these zircons (527 ± 9 and 516 ± 13 Ma) allow deposition of a significant part of the Shotkusa-1 sequence at the very beginning of the Cambrian.  相似文献   

4.
正Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.  相似文献   

5.
6.
The sediment-hosted copper deposits according to the authors‘ study were formed from connate formation water during the post-sedimentary or diagenetic stage while the sediment-hosted disseminated gold deposits are unanimously considered to be of post-sedimentary hydrothermal origin.Therefore,apart from their own individulities.These two types of deposits must share some characters in common.Comparisons are attempted,in this paper,between the sediment-hosted copper deposits in southwest China and the Triassic sediment-hosted disseminated gold deposits in the Yunnan-Guizhou-Guangxi Triangle in terms of geological and geochemical features.  相似文献   

7.
The Bismark deposit (northern Chihuahua, Mexico) is one of several base metal-rich high-temperature, carbonate-replacement deposits hosted in northern Mexico. Previous fluid inclusion studies based on microthermometry and PIXE have shown that the Zn-rich, Pb-poor Bismark deposit formed from a moderate salinity magmatic fluid [Baker, T. and Lang, J.R., 2003. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico. Mineralium Deposita 38(4), 474–495; Baker, T., van Achterberg, E., Ryan, C.G. and Lang, J.R., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2), 117–120]. The exact precipitation mechanisms are unclear and may have due to cooling, salinity decrease and wall rock reaction. Furthermore, PIXE data suggested that Pb and Zn concentrations were comparable and inconsistent with the Zn-rich nature of the ore. However, Pb was commonly below the limit of detection for PIXE and the data presented by Baker et al. [Baker, T., van Achterberg, E., Ryan, C.G. and Lang, J.R., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2), 117–120] are regarded as the maximum concentrations of Pb in the fluid. In this study new LA ICP MS analysis was carried out on the same fluid inclusion population to compare with the PIXE data in order to constrain the uncertainty related to the Pb data and the new results are used to model possible ore deposition mechanisms. The new laser ablation data reveal overall lower concentrations of Pb in the ore fluid (average value ~ 285 ppm) than previously indicated by PIXE analysis (average value ~ 713 ppm). Chemical modelling using the new laser ablation data tested the following ore deposition processes: 1) cooling; 2) fluid–rock reaction at constant temperature; 3) cooling and simultaneous fluid–rock interaction. Modelling results show that the gangue and ore minerals observed at Bismark are best reproduced by fluid–rock interaction and simultaneous cooling. Results from the simulations strongly indicate that ore deposition was mainly driven by a pH increase due to the neutralization of the acidic ore fluid (pH = 3.9) as the result of the reaction with the limestone. Modelling results also suggest that the deposit likely formed under cooling conditions, but do not support the hypothesis of a temperature decrease as the principal ore-forming process.  相似文献   

8.
The middle Jurassic Coast Range Ophiolite (CRO) is one of the most important tectonic elements in western California, cropping out as tectonically dismembered elements that extend 700 km from south to north. The volcanic and plutonic sections are commonly interpreted to represent a supra-subduction zone (SSZ) ophiolite, but models specifying a mid-ocean ridge origin have also been proposed. These contrasting interpretations have distinctly different implications for the tectonic evolution of the western Cordillera in the Jurassic. If an SSZ origin is confirmed, we can use the underlying mantle peridotites to elucidate melt processes in the mantle wedge above the subduction zone. This study uses laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to study pyroxenes in peridotites from four mantle sections in the CRO. Trace element signatures of these pyroxenes record magmatic processes characteristic of both mid-ocean ridge and supra-subduction zone settings. Group A clinopyroxene display enriched REE concentrations [e.g., Gd (0.938–1.663 ppm), Dy (1.79–3.24 ppm), Yb (1.216–2.047 ppm), and Lu (0.168–0.290 ppm)], compared to Group B and C clinopyroxenes [e.g., Gd (0.048–0.055 ppm), Dy (0.114–0.225 ppm), Yb (0.128–0.340 ppm), and Lu (0.022–0.05 ppm)]. These patterns are also evident in orthopyroxene. The differences between these geochemical signatures could be a result of a heterogeneous upper mantle or different degrees of partial melting of the upper mantle. It will be shown that CRO peridotites were generated through fractional melting. The shapes of REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Models call for 3% dry partial melting of MORB-source asthenosphere in the garnet lherzolite field for abyssal peridotites and 15–20% further partial melting in the spinel lherzolite field, possibly by hydrous melting for SSZ peridotites. These geochemical variations and occurrence of both styles of melting regimes within close spatial and temporal association suggest that certain segments of the CRO may represent oceanic lithosphere, attached to a large-offset transform fault and that east-dipping, proto-Franciscan subduction may have been initiated along this transform.  相似文献   

9.
A large number of Paleoproterozoic borate deposits are hosted by the lower units of a volcanic-sedimentary sequence in Liaoning Province, northeastern China, and are a major source of boron in China. The ore-bearing wall rocks in the deposits are serpentinized ultrabasic rocks and carbonates, with layered leptynites, leptites, amphibolites, and migmatites adjacent to the ore. Both the borate ores and country rocks contain tourmaline, although the country rocks have much lower abundances of the mineral. Based on in situ boron isotope measurements using laser ablation–multi-collector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS), boron isotope data show that: (1) δ11B values of borate ores range from + 6.8‰ to + 13.9‰ (mean + 10.8‰); (2) tourmalines from the borate ores have δ11B values from + 9.5‰ to + 12.7‰; and (3) the wall rocks within the borate ores yield slightly lower δ11B values ranging from + 5.7‰ to + 7.6‰, and those outside the deposits from − 9.9‰ to − 5.9‰. Positive δ11B values in borates as well as in tourmalines inside the mining area indicate that boron in these Paleoproterozoic borate deposits was derived from marine evaporites. δ34SV-CDT (where V-CDT is Vienna Canyon Diablo Troilite) values of borate ores, serpentinized marbles, and anhydrites range from + 16.1‰ to + 24.7‰, whereas δ13CV-PDB (where V-PDB is Vienna Pee Dee Belemnite) values of marbles range from + 3.2‰ to + 5.9‰. These isotopic characteristics are interpreted to reflect formation in a marine evaporative environment. LA–MC–ICP–MS zircon weighted207Pb/206Pb ages of leptite and serpentinized olivine basalt from the hanging wall of the borate deposits are 2139 ± 13 Ma and 2130 ± 19 Ma, respectively. Therefore, the (~ 2.2 Ga) borate deposits may have originated from marine evaporative boron-bearing sediments, which were interbedded within bimodal volcanic rocks during the early stages of development of the Liaoji rift.  相似文献   

10.
The global Hangenberg Crisis or Hangenberg Extinction is a mass extinction near the Devonian–Carboniferous boundary. Comprehensive research of petrology and geochemistry on the Devonian–Carboniferous boundary, as exposed in the Nanbiancun auxiliary stratotype section, South China, elucidates paleoenvironmental changes and controls on marine strontium (87Sr/86Sr) and carbonate carbon (δ13Ccarb) isotopes during the Hangenberg Crisis. The new 87Sr/86Sr data reveal a regression in the Middle Siphonodella praesulcata Zone, while the Hangenberg Extinction was occurring in South China. Moreover, the δ13Ccarb data records a negative excursion near the base of the Middle Siphonodella praesulcata Zone that may have been connected with the Hangenberg Extinction. A positive δ13Ccarb excursion, corresponding with the Upper Siphonodella praesulcata Zone, may reflect the effects of a vigorous biological pump. The magnitude of the Hangenberg Carbon Isotopic Excursion in peak δ13carb values and δ13Ccarb gradient in carbonate Devonian–Carboniferous boundary sections of the South China Craton during the Hangenberg Crisis, are a function of depositional water depth and distance from the shore. The carbon cycling during the Hangenberg Carbon Isotopic Excursion had a much stronger impact on oceanic surface waters than on the deep ocean and the δ13Ccarb gradient of local seawater was likely caused by enhanced marine productivity, associated with biological recovery in platform sediments during the Hangenberg Crisis.  相似文献   

11.
西藏雅鲁藏布江缝合带西段东波蛇绿岩的构造背景特征   总被引:2,自引:0,他引:2  
西藏东波蛇绿岩位于雅鲁藏布江缝合带西段,由地幔橄榄岩、辉石岩和辉长岩等组成。地幔橄榄岩主要为方辉橄榄岩、纯橄岩和少量二辉橄榄岩。岩体的边界出露玄武岩和硅质岩等。地幔橄榄岩中有少量辉石岩和辉长岩的脉岩,宽约1 m,走向北西,与岩体的构造线方向基本一致。各岩相岩石地球化学研究结果表明,东波蛇绿岩的岩相存在较大的差异,玄武岩具有与洋岛玄武岩(OIB)相似的地球化学特征,而地幔橄榄岩中辉石岩、辉长岩脉与洋中脊玄武岩(MORB)相似,形成于洋中脊环境,并受后期俯冲流体作用的改造。东波岩体中二辉橄榄岩具有与深海地幔橄榄岩较一致的轻稀土亏损特征,而方辉橄榄岩和纯橄岩的地球化学特征显示出岩体形成于MOR环境,后受到SSZ环境的改造。东波蛇绿岩的岩石地球化学特征显示其洋中脊叠加洋岛的构造背景。  相似文献   

12.
The Yarlung–Zangbo Suture Zone, a major geological structure in Tibet, is well known as the locus of tectonic emplacement of the Tethyan ophiolites. Current models propose that most of the East Tethyan oceanic lithosphere was subducted within a single subduction zone, active during the Middle or Late Cretaceous, which was completed during the Paleogene collision between India and Asia. The Early Cretaceous sedimentary Giabulin Formation in southern Tibet, includes conglomeratic members that contain ultramafic and mafic plutonic pebbles, as well as radiolarian chert clasts, that record the erosion of oceanic lithosphere involved in a subduction event which occurred earlier than previously believed. Geochemical analyses, mineral chemistry, stratigraphic chronology, and sedimentary analysis, including source provenance, suggest that the pebbly conglomerate was formed through erosion of an unknown ophiolitic source that was geochemically distinguishable from the Xigaze ophiolites within the Yarlung–Zangbo Suture Zone, southern Tibet. We infer the existence of an older ophiolitic source, termed the Yarlung–Zangbo paleo-ophiolite, that was dismembered and eroded during an earlier subduction stage not taken into account in current models.  相似文献   

13.
14.
The Purang ophiolite, which crops out over an area of about 600 km2 in the western Yarlung‐Zangbo suture zone, consists chiefly of mantle peridotite, pyroxenite and gabbro. The mantle peridotites are mostly harzburgite and minor lherzolite that locally host small pods of dunite. Some pyroxenite and gabbro veins of variable size occur in the peridotites, and most of them strike NW. On the basis of their mineral chemistry podiform chromitites are divided into high‐alumina (Cr# = 20‐60) (Cr# = 100*Cr/(Cr+Al)) and high‐chromium (Cr# = 60‐80) varieties (Thayer, 1970). Typically, only one type occurs in a given peridotite massif, although some ophiolites contain several massifs which can have different chromitite compositions. However, the Purang massif contains both high chrome and high alumina chromitites within a single mafic‐ultramafic body. Seven small, lenticular bodies of chromitite ore have been found in the harzburgite, with ore textures ranging from massive to disseminated to sparsely disseminated; no nodular ore has been observed. Individual ore bodies are 2‐6 m long, 0.5‐2 m wide and strike NW, parallel to the main structure of the ophiolite. Ore bodies 1 and 6 consist of Al‐rich chromitite (Cr# = 52‐55), whereas orebodies 2, 3, 4 and 5 are Cr‐rich varieties (Cr # = 63 to 89). In addition to magnesiochromite, all of the orebodies contain minor olivine, amphibole and serpentine. Mineral structures show that the peridotites experienced plastic deformation and partial melting. On the basis of magnesiochromite and olivine/clinopyroxene compositions two stages of partial melting are identified in the Purang peridotites, an early low‐partial melting event (about 8%), and a later high‐partial melting event (about 40%). We interpret the Al‐rich chromitites as the products of early MORB magmas, whereas the Cr‐rich varieties are thought to have been generated by the later SSZ melts..  相似文献   

15.
<正>The first diamonds from ophiolite were found in peridotite of Luobusa ophiolite along Yarlung Zangbu suture zone in Tibet,China(IGCAGS,1981),and then more and more diamonds found in harzgurgite(Bai et al.,1993;Yang et al.,2007a;Robinson et al.,2014;Xu et al.,  相似文献   

16.
雅鲁藏布江缝合带是青藏高原上重要的缝合带之一,位于青藏高原南部,蛇绿岩是该带的主体。雅鲁藏布江缝合带按蛇绿岩的出露规模、岩石层序以及侵位时间,大致可以分为东段、中段和西段。在蛇绿岩出露规模上存在显著差异,东段规模较小,中段次之,西段最大,并且在西段分成两支蛇绿岩带;蛇绿岩岩石层序出露比较齐全的是中段日喀则和东段罗布莎,其他地方的蛇绿岩均被肢解,不能组成完整的蛇绿岩岩石剖面;在蛇绿岩的形成和侵位时间上,也有着不同的特点,东段和西段集中形成于晚侏罗世—早白垩世,而中段形成时间较早,时代从中三叠世一直持续到早白垩世,主要集中形成于晚侏罗世—早白垩世。笔者系统研究雅鲁藏布江缝合带蛇绿岩在东西方向上所表现出来的差异性,对更全面深刻地了解新特提斯洋的产生、俯冲及其消亡过程和演化历史具有重要意义。  相似文献   

17.
熊发挥  杨经绥  巴登珠  高健  来盛民  张岚 《地质学报》2016,90(11):3099-3113
雅鲁藏布江缝合带东段加查县杰莎岩体主要由蚀变较强的方辉橄榄岩和纯橄岩、豆荚状铬铁矿组成。铬铁矿矿体呈东西向,倾向北西,矿体的围岩为纯橄岩及方辉橄榄岩,长20~40m,宽1~3m。镜下特征和电子探针分析结果显示铬铁矿中铬尖晶石的Cr#=67.9~88.5,Mg#值变化在64.6~68.2之间,TiO2含量为0.06%~0.18%,Al2O3含量为13.1%~16.5%,表明杰莎铬铁矿为高铬型铬铁矿。方辉橄榄岩中橄榄石、斜方辉石和单斜辉石的矿物化学特征表明杰莎岩体既具有深海地幔橄榄岩特征,也具有岛弧地幔橄榄岩的特点。并且依据铬尖晶石-橄榄石/单斜辉石的矿物化学成分,识别出杰莎岩体至少经历了2期过程,包括早期部分熔融(20%~30%)和晚期的岩石/熔体反应作用(35%)。因此,杰莎地幔橄榄岩和铬铁矿可能与雅鲁藏布江缝合带中其他岩体一样,经历了洋中脊及俯冲带的多阶段叠加的过程。  相似文献   

18.
对日喀则地区群让、白朗和白岗的地幔橄榄岩和辉长辉绿岩进行了主微量元素和铂族元素(PGE)分析,结果显示,三地的地幔橄榄岩PGE总量相似,球粒陨石标准化曲线大致平坦,IPGE和PPGE的分馏不显著,白岗和群让样品的PdN/IrN和PdN/PtN值大于1;白岗村蛇绿岩糜棱岩带中采集到洋岛型碱性玄武质辉绿岩,其化学性质与仁布洋岛型玄武质岩石相似。表明日喀则蛇绿岩起源于弧后盆地环境,其南部的蛇绿岩糜棱岩带可能包含了日喀则蛇绿岩形成时相对应的岛弧火山岩,以及新特提斯洋的残留物。  相似文献   

19.
<正>The Cretaceous Xigaze ophiolite is best exposed at the central Yarlung Zangbo Suture Zone(YZSZ,Tibet)which also includes the Gangdese arc and the Xigaze forearc basin.This study reports new geochronological and geochemical data for this ophiolite to revisit its geodynamic and petrogenetic evolution.The Xigaze  相似文献   

20.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号