首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The unidirectional solidification textures (UST) quartz is generally thought to form from fluids exsolved from shallow intrusions and/or magma chambers, but such an idea is still poorly constrained from the evidence of stable isotopes. In this study, we report for the first time the δ18O of quartz that shows UST from the Qulong Cu–Mo and the Yechangping Mo porphyry deposits in China. The analysis results show that the UST quartz samples from the Qulong deposit have δ18O values ranging from +6.2 ‰ to +7.6 ‰, which are similar to that of quartz phenocrysts (+6.7 ‰ to +7.8 ‰). In contrast, the UST quartz samples from the Yechangping porphyry Mo deposit yield a high δ18O value (+10.0 ‰). The δ18Owater value of Yechangping UST quartz (+8.5 ‰) is also higher than that of Qulong (+4.6 ‰ to +5.8 ‰). Hydrothermal biotite from potassic alteration and sericite from early phyllic alteration at Qulong have similar δ18O values to UST quartz, suggesting the involvement of magmatic fluids during this stage of deposit evolution.  相似文献   

2.
Numerous studies have shown that precipitation isocapes drive δD and δ18O patterns in surficial waters and in terrestrial food webs. While the GNIP (Global Network for Isotopes in Precipitation) dataset provided a key foundation for linking precipitation-terrestrial isoscapes globally, it has insufficient spatial coverage in many countries like Mexico. To overcome this limitation, we hypothesized that shallow phreatic groundwaters in Mexico could be used as an isotopic integrator of long-term seasonally weighted precipitation inputs to the landscape to aid in calibrating spatial H and O isotope datasets for terrestrial, biological and hydrological research. Groundwater was sampled from 234 sites in Mexico at ~ 50 km latitudinal spacing to obtain high spatial resolution and country-wide coverage for the construction of a groundwater isoscape. Our data revealed that shallow groundwater infiltration in Mexico appears largely unaffected by evaporation and reflects seasonally weighted precipitation inputs. These precipitation inputs are primarily biased to summertime when highest rainfall occurs, but a small degree of post-precipitation evaporation revealed a lower d-excess zone that corresponded to the interior semi-arid ecozone. We developed a predictive general linear model (GLM) for hydrogen and oxygen isotopic spatial patterns in Mexican groundwater and then compared the results to a validation subset of our field data, as well external data reported in the literature. The GLM used elevation, latitude, drainage basin (Atlantic vs. Pacific), and rainfall as the most relevant predictive variables. The GLM explained 81% of the overall isotopic variance observed in groundwater, 68% of the variance within our validation subset, and 77% of the variance in the external data set. Our predictive GLM is sufficiently accurate to allow for future ecological, hydrological and forensic isoscape applications in Mexico, and may be an approach that is applicable to other countries and regions where GNIP stations are lacking.  相似文献   

3.
The relative timing of two discrete pulses of metamorphic fluid flow is constrained based on chemical zoning in several garnet crystals from Kvaløya, Troms, northern Norway. The garnet crystals measured 1–2 cm in diameter and were contained within c. 1.6 Ga, staurolite grade metasediments. Major element zoning indicates that garnet grew under normal prograde conditions in the garnet and/or staurolite zones. Timing constraints are based on comparisons between major and trace element chemical zoning, oxygen isotope (δ18O) zoning and deformational (inclusion trail) zoning in one of the garnet. We interpret at least two pulses of metamorphic fluid flow. The first pulse occurred during the syn‐tectonic growth interval. The δ18O zoning was reversed relative to ‘normal’ prograde zoning and the δ18O maximum was located within the syn‐tectonic growth zone, displaced 3–4 mm from the garnet core. The fluid might have been sourced in neighbouring calcareous pelites and may also have caused formation of an Y ring. The second (and subsequent) pulse(s) occurred during/after the post‐tectonic growth interval. δ18O was locally increased at the garnet rim, particularly where the rim was sheared. The incomplete rim was also enriched in calcium. Transport of oxygen and calcium by metamorphic fluids is well documented. Transport of Y is both problematic and poorly understood, but might have been facilitated by complexing with F and/or CO2.  相似文献   

4.
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice‐core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual‐inlet isotope‐ratio mass spectrometry. The δ2H and δ18O values of USGS49 are ?394.7 ± 0.4 and ?50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5 mUr. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope‐ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.  相似文献   

5.
A series of confirmed and suspected dammed palaeo‐lake sedimentary successions is scattered within the middle Yarlung Tsangpo valley in Tibet. However, the chronology, the genesis of the dam and its location, the water level of the dammed lake, the process of dam failure and the spatiotemporal relationships between the sedimentary successions remain controversial. Here, we focus on one sedimentary succession of the suspected dammed palaeo‐lake at Xigazê. We measured the grain‐size distribution, magnetic susceptibility, organic and inorganic carbon content, and δ13Corg and δ15Ntotal ratios of the sediments. In addition, we measured the δ18Oshell and δ13Cshell values of modern and fossil Radix sp. shells, and the δ18Owater and δ13CDIC values of the ambient water with different hydrological regimes. The results indicate that the δ18Oshell values of modern Radix sp. and the δ18Owater of the ambient water body significantly depend on its hydrological status. In addition, a strong positive relationship was observed between δ18Oshell values of modern Radix sp. shells and the δ18Owater of the ambient water on the Tibetan Plateau. According to this correlation, the δ18Owater values of the palaeo‐water body are reconstructed using the δ18Oshell values of Radix sp. fossil shells in the Xigazê section. Further, based on the δ18Oshell values of fossil Radix sp., the reconstructed δ18Owater of the palaeo‐water body and the specific habitats of Radix sp., we infer that the sedimentary succession in the Xigazê broad valley was mainly formed within the backwater terminal zone of a dammed palaeo‐lake and that the elevation of the water level of the lake was approximately 3811 m a.s.l. AMS 14C dating indicates that the deposits of the dammed palaeo‐lake were formed at about 33–22 cal. ka BP. Finally, the presence of Radix sp. fossil shells within the Xigazê section suggests that Radix sp. survived the late Last Glacial Period on the Tibetan Plateau.  相似文献   

6.
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual‐inlet isotope‐ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were ?235.8 ± 0.7‰ and ?29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5‰. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95‐percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.  相似文献   

7.
This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of instrumental mass fractionation (IMF) in the microanalyses of δ13C and δ18O by SIMS in carbonates of the magnesite–siderite solid‐solution series (MgCO3–FeCO3). A suite of twelve calibration reference materials (RMs) was developed and documented (calibrated range: Fe# = 0.002–0.997, where Fe# = molar Fe/[Mg + Fe]), along with empirical expressions for regressing calibration data (affording residuals < 0.5‰ relative to certified reference material NIST‐19). The calibration curves of both isotope systems are non‐linear and have, over a 2‐year period, fallen into one of two distinct but largely self‐consistent shape categories (data from ten measurement sessions), despite adherence to well‐established analytical protocols for carbonate δ13C and δ18O analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently most sensitive to changes in composition near the magnesite end‐member (Fe# 0–0.2), deviating by up to 4.5‰ (δ13C) and 14‰ (δ18O) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at present and demonstrates the importance of having available a sufficient number of well‐characterised RMs so that potential complexities of curvature can be adequately delineated and accounted for on a session‐by‐session basis.  相似文献   

8.
《Sedimentology》2018,65(5):1611-1630
This study focuses on recent debate over the value of stable isotope‐based environmental proxies recorded in riverine tufa stromatolites. A twelve‐year record (1999 to 2012) of river‐bed tufa stromatolites in the River Piedra (north‐east Spain) was recovered in this study, along with a partly overlapping fifteen‐year record (1994 to 2009) of accumulations in a drainage pipe: both deposits formed in water with near identical physico/chemical parameters. Measured water temperature data and near‐constant δ 18Owater composition allowed selection of an ‘equilibrium’ palaeotemperature equation that best replicated actual temperatures. This study, as in some previous studies, found that just two published formulas for water temperature calculation from equilibrium calcite δ 18O compositions were appropriate for the River Piedra, where tufa deposition rates are high, with means between 5·6 mm and 10·8 mm in six months. The δ 18Ocalcite in both the river and the pipe deposits essentially records the full actual seasonal water temperature range. Only the coldest times (water temperature <10°C), when calcite precipitation mass decreased to minimum, are likely to be unrepresented, an effect most noticeable in the pipe where depositional masses are smaller and below sample resolution. While kinetic effects on δ 18Ocalcite‐based calculated water temperature cannot be ruled out, the good fit between measured water temperature and δ 18Ocalcite‐calculated water temperature indicates that temperature is the principal control. Textural and deposition rate variability between the river and pipe settings are caused by differences in flow velocity and illumination. In the river, calcification of growing cyanobacterial mat occurred throughout the year, producing composite dense and porous laminae, whereas in the pipe, discontinuous cyanobacterial growth in winter promoted more abiogenic calcification. High‐resolution δ 18Ocalcite data from synchronous pipe and river laminae show that reversals in water temperature occur within laminae, not at lamina boundaries, a pattern consistent with progressive increase in calcite precipitation rate as cyanobacterial growth re‐established in spring.  相似文献   

9.
《Sedimentology》2018,65(2):360-399
Sedimentary gaps are a major obstacle in the reconstruction of a carbonate platform's history. In order to improve the understanding of the early diagenesis and the succession of events occurring during the formation of discontinuity surfaces in limestones, secondary ion mass spectrometry was used for the first time to measure the δ 18O and δ 13C signatures of 11 early cement and fabric stages in several discontinuity surfaces from the Jurassic carbonate platform of the Paris Basin, France. Pendant cements show a high variability in δ 18O, which was impossible to detect by the less precise microdrilling method. The morphology of a given cement can be produced in various environments, and dogtooth cements especially can precipitate in marine phreatic and meteoric phreatic to vadose environments. Marine dogtooth cements and micritic microbially induced fabrics precipitated directly as low‐magnesium calcite in marine waters, as attested to by the preservation of their initial δ 18O and δ 13C signals. Five discontinuity types are recognized based on high‐resolution geochemical analyses, and their palaeoenvironmental history can be reconstructed. Two exposure surfaces with non‐ferroan pendant or meniscus cements formed in the oxidizing vadose zone. A hardground displays marine fibrous cements and non‐ferroan dogtooth cements that formed in a subtidal environment in oxidizing water. Two composite surfaces have undergone both marine and subaerial lithification. Composite surface 1 displays non‐luminescent ferroan dogtooth cements that precipitated in reduced conditions in seawater, followed by brown‐luminescent dogtooth cements characteristic of a meteoric phreatic environment. Composite surface 2 exhibits microbially induced fabrics that formed in marine water with abundant organic matter. The latter discontinuity, initially formed in a subtidal environment, was subsequently exposed to meteoric conditions, as evidenced by ferroan geopetal cements. A high‐resolution ion microprobe study is essential to precisely document the successive diagenetic environments that have affected carbonate rocks and discontinuities with a polygenic and intricate history.  相似文献   

10.
In the present study, the modified Sverjensky–Molling equation, derived from a linear-free energy relationship, is used to predict the Gibbs free energies of formation of crystalline phases of α-MOOH (with a goethite structure) and α-M2O3 (with a hematite structure) from the known thermodynamic properties of the corresponding aqueous trivalent cations (M3+). The modified equation is expressed as ΔG0f,MVX=aMVXΔG0n,M3++bMVX+βMVXγM3+, where the coefficients aMVX, bMVX, and βMVX characterize a particular structural family of MvX (M is a trivalent cation [M3+] and X represents the remainder of the composition of solid); γ3+ is the ionic radius of trivalent cations (M3+); ΔG0f,MVX is the standard Gibbs free energy of formation of MvX; and ΔG0n,M3+ is the non-solvation energy of trivalent cations (M3+). By fitting the equation to the known experimental thermodynamic data, the coefficients for the goethite family (α-MOOH) are aMVX=0.8838, bMVX=?424.4431 (kcal/mol), and βMVX=115 (kcal/mol.?), while the coefficients for the hematite family (α-M2O3) are aMVX=1.7468, bMVX=?814.9573 (kcal/mol), and βMVX=278 (kcal/mol.?). The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases (i.e. phases that are thermodynamically unstable and do not occur at standard conditions) within the isostructural families of goethite (α-MOOH) and hematite (α-M2O3) if the standard Gibbs free energies of formation of the trivalent cations are known.  相似文献   

11.
The region of north Iceland is highly sensitive climatically owing to its location with respect to atmospheric and oceanographic fronts. In this study we present total carbonate and δ18O records of benthic and planktic Foraminifera from nine sediment cores from the North Iceland Shelf. The results of this work indicate that the deglaciation of the Vestfirdir Peninsula was completed by 10 200 cal. yr BP. The 8200 cal. yr BP cold event is present only as a minor isotopic event, and seems not to have had much of a cooling effect on the bottom waters of the northwest Iceland shelf. The Holocene maximum warmth, attributed to a stronger North Icelandic Irminger Current, occurred between ca. 7800 and 6200 cal. yr BP. Over the past 4500 cal. yr BP a general cooling trend has occurred on the North Iceland Shelf, and superimposed on this overall cooling trend are a number of oscillations between periods when relatively warmer and cooler waters occupied the shelf. Relatively cooler waters were present at 4200–4000 cal. yr BP, 3200–2900 cal. yr BP, 2500–2350 cal. yr BP and 600–200 cal. yr BP, whereas relatively warmer waters were present on the shelf at 3750–3450 cal. yr BP, 2800–2600 cal. yr BP and 1700–1000 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Karst rocks from the Huanglong Formation exposed at the margin of the Eastern Sichuan Basin can be divided into four types:slightly corroded, moderately corroded porous, intensely corroded brecciated and intensely corroded and replaced secondary calcic karstic rocks. The carbon, oxygen and strontium isotope compositions of the various karst rocks are analyzed systematically and compared to rocks without karst corrosion. The results indicate that(1) the Huanglong Formation in the eastern Sichuan Basin was a restricted bay supplied and controlled by freshwater in which mudmicrite and mud-dolomicrite exhibit low δ13C and δ18O values and high 87Sr/86 Sr ratios;(2) all types of karstic rocks in the paleokarst reservoirs of the Huanglong Formation in the research area are affected by atmospheric freshwater with the δ13C and δ18O values and 87Sr/86 Sr ratios in the original formation approaching those of atmospheric freshwater, which reflects ancient hydrological conditions, fluid properties, isotopic source and the fractionation effect;(3) the intensely corroded and replaced secondary limestone is affected by a variety of diagenetic fluids, often reflected by δ13C and δ18O values, while the 87Sr/86 Sr ratios exhibit the strong degree of the corrosion;(4) after comparing the 87Sr/86 Sr ratios of each type of karst rock, the diagenetic fluids are determined to be mainly atmospheric freshwater, and depending on the strength of corrosion, and the low 87Sr/86 Sr ratio fluids in the layer will participate in the karst process. The carbon, oxygen, and strontium isotopes of different karstic reservoirs can provide meaningful geochemical information for forecasting and evaluating the development and distribution rules of the Huanglong Formation at the margin of the eastern Sichuan Basin in time and space.  相似文献   

14.
We document the development of a suite of carbonate mineral reference materials for calibrating SIMS determinations of δ18O in samples with compositions along the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2]. Under routine operating conditions for the analysis of carbonates for δ18O with a CAMECA IMS 1280 instrument (at WiscSIMS, University of Wisconsin‐Madison), the magnitude of instrumental bias along the dolomite–ankerite series decreased exponentially by ~ 10‰ with increasing Fe content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mol% Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the sample matrix effect) was calibrated using the Hill equation, which relates bias to the Fe# of dolomite–ankerite [i.e., molar Fe/(Mg+Fe)] for thirteen reference materials (Fe# = 0.004–0.789); for calibrations employing either 10 or 3 μm diameter spot size measurements, this yielded residual values ≤ 0.3–0.4‰ relative to CRM NBS 19 for most reference materials in the suite. Analytical precision was ± 0.3‰ (2s, standard deviations) for 10‐μm spots and ± 0.7‰ (2s) for 3‐μm spots, based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses. Analytical uncertainty for individual sample analyses was approximated by a combination of precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 0.5‰ (2s) for 10‐μm spots and ± 1‰ (2s) for 3‐μm spots.  相似文献   

15.
Meteoric sphaerosiderite lines (MSLs), defined by invariant δ18O and variable δ13C values, are obtained from ancient wetland palaeosol sphaerosiderites (millimetre‐scale FeCO3 nodules), and are a stable isotope proxy record of terrestrial meteoric isotopic compositions. The palaeoclimatic utility of sphaerosiderite has been well tested; however, diagenetically altered horizons that do not yield simple MSLs have been encountered. Well‐preserved sphaerosiderites typically exhibit smooth exteriors, spherulitic crystalline microstructures and relatively pure (> 95 mol% FeCO3) compositions. Diagenetically altered sphaerosiderites typically exhibit corroded margins, replacement textures and increased crystal lattice substitution of Ca2+, Mg2+ and Mn2+ for Fe2+. Examples of diagenetically altered Cretaceous sphaerosiderite‐bearing palaeosols from the Dakota Formation (Kansas), the Swan River Formation (Saskatchewan) and the Success S2 Formation (Saskatchewan) were examined in this study to determine the extent to which original, early diagenetic δ18O and δ13C values are preserved. All three units contain poikilotopic calcite cements with significantly different δ18O and δ13C values from the co‐occurring sphaerosiderites. The complete isolation of all carbonate phases is necessary to ensure that inadvertent physical mixing does not affect the isotopic analyses. The Dakota and Swan River samples ultimately yield distinct MSLs for the sphaerosiderites, and MCLs (meteoric calcite lines) for the calcite cements. The Success S2 sample yields a covariant δ18O vs. δ13C trend resulting from precipitation in pore fluids that were mixtures between meteoric and modified marine phreatic waters. The calcite cements in the Success S2 Formation yield meteoric δ18O and δ13C values. A stable isotope mass balance model was used to produce hyperbolic fluid mixing trends between meteoric and modified marine end‐member compositions. Modelled hyperbolic fluid mixing curves for the Success S2 Formation suggest precipitation from fluids that were < 25% sea water.  相似文献   

16.
To reveal the influence of current warming on tree growth and δ18O in a sensitive high‐latitude region that is undergoing rapid climate change, we examined tree width and the earlywood and latewood δ18O at two sites with a 400‐m elevation difference in the Sygera Mountains of the southeastern Tibetan Plateau. The study period was from 1950 to 2011. The mean tree‐ring index at the low site was higher than that at the high site during the study period. The climatic responses of earlywood and latewood δ18O at both sites were similar. Earlywood δ18O was mainly influenced by the June to August temperature and total cloud cover, whereas latewood δ18O was mainly controlled by relative humidity from July to August. Spatial correlations with CRU TS 3.1 regional data suggest that our δ18O chronologies can represent climatic changes over large regions. The high offset between earlywood δ18O at the two sites (2.3‰ higher at the low site) was mainly influenced by the high temperature lapse rate as a function of altitude during the earlywood growing season. Furthermore, meltwater with lower δ18O values might have affected earlywood δ18O at the high site, and thereby increased the earlywood δ18O offset between two sites. The low latewood δ18O offset between the two sites (0.4‰ higher at the low site) was not significant, but appears to have been primarily influenced by the low precipitation δ18O lapse rate as a function of altitude during the latewood growing season. Earlywood δ18O of Smith fir suitable for reconstructing past temperatures and latewood δ18O suitable for reconstructing past relative humidity on the southeastern Tibetan Plateau were identified.  相似文献   

17.
18.
19.
With the aim of evaluating the influence of glacial meltwater signature on tree‐ring stable isotopes, we analysed δ18O and δ13C in the tree rings of Larix decidua Mill. specimens growing in the area of an ice‐contact lake (Lago Verde, at Miage Glacier, European Alps). Additionally, we analysed δ18O in the glacial meltwater of the lake and of the glacier stream and compared it with the δ18O of precipitation predicted by a spatial model. We found that tree‐ring cellulose of trees fed by glacial meltwaters (LVW site) is significantly more depleted in δ18O than at a control site LVM (?0.91‰) fed only by precipitation, thus reflecting the measured higher depletion of glacial meltwaters with respect to local precipitation. δ13C values did not show significant differences in mean values between the two sites but an anomalous correlation with summer temperature was found at the LVW site, probably due to the different responses of trees stomatal conductance. Over the 30‐year period of analysis, four years at LVW (1992, 1995, 2003 and 2009) were markedly depleted in δ18O. These years are those when the highest summer temperatures were recorded in the area (the ones during which glacier ablation usually increases and more depleted meltwaters fill the lake), with the exception of 1995 during which high water levels occurred following the year with the second highest summer temperature (1994). Overall, our analysis demonstrates that tree‐ring δ18O, driven by the glacial meltwater signature in the lake, can be used for detecting past major glacier runoff events. The proposed approach could also be used for quantifying past glacier runoff and for defining past distribution areas of glacial meltwaters in glacier forefields, thus contributing to past environmental reconstructions and to hazard assessment.  相似文献   

20.
The oxygen isotope composition of diatom silica (δ18Odiatom) is increasingly being used to reconstruct climate from marine and lacustrine sedimentary archives. Although diatoms are assumed to precipitate their frustule in isotopic equilibrium with their surrounding water, it is unclear whether internal processes of a given species affect the fractionation of oxygen between the water and the diatom. We present δ18Odiatom data from two diatom size fractions (3–38 and >38 µm) characterized by different species in a sediment core from Heart Lake, Alaska. Differences in δ18Odiatom between the two size fractions varies from 0 to 1.2‰, with a mean offset of 0.01‰ (n = 20). Fourier transform infrared spectroscopy confirms our samples consist of pure biogenic silica (SiO2) and δ18Odiatom trends are not driven by contamination. The maximum offset is outside the range of error, but the mean is within analytical error of the technique (± 1.06‰), demonstrating no discernible species‐dependent fractionation in δ18Odiatom. We conclude that lacustrine δ18Odiatom measurements offer a reliable and valuable method for reconstructing δ18Owater. Considering the presence of small offsets in our two records, we advise interpreting shifts in δ18Odiatom only where the magnitude of change is greater than the combined analytical error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号