首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

2.
This study describes surface cyclone activity associated with the interannual variability in summer precipitation in northern Eurasia and how that activity may be connected to other climate signals. An east–west seesaw oscillation of precipitation across Siberia is the primary mode of interannual variability in the summer hydrological cycle over northern Eurasia. This variation occurs at sub-decadal timescales of about 6–8 years. The spatial characteristics of cyclone frequency and cyclone tracks at the two poles in variability [eastern Siberia (ES)-wet–western Siberia (WS)-dry and WS-wet–ES-dry] were examined, and temporal variability in regional cyclone frequency was compared to basin-scale precipitation variability. The analysis period was from 1973 to 2002, when the precipitation variability signal was predominant.Cyclone behavior suggested that the regions of enhanced (reduced) cyclone activity coincided with regions of increased (decreased) precipitation in each phase of the oscillation. Such behavior reflects the zonal displacement of the track of frequent storm activity that accompanies the changes in precipitation. Comparisons of the temporal characteristics confirmed the importance of regional cyclone frequency on precipitation variability in both eastern and western Siberia. Low-frequency changes in regional cyclone activity may produce the precipitation oscillation. We used various climate signals to explore connections between regional precipitation and cyclone activity in Siberia. Results suggest that the North Atlantic Oscillation (NAO) from the preceding winter is significantly and negatively correlated with summer surface cyclone frequency and precipitation over western Siberia. Enhanced (reduced) summer cyclone activity and precipitation in western Siberia follows low- (high-) winter NAO. However, the physical mechanisms linking summer cyclone activity and precipitation over western Siberia with the preceding climate conditions associated with the winter NAO remain unclear.  相似文献   

3.
Lake-geological studies in China have reported that there were much higher lake levels and much fresher water than today at the last glacial maximum (LGM) in western China. A compilation of lake data in this study showed LGM conditions much drier than today in eastern China but somewhat wetter in western China. These E–W differential patterns of climate conditions were completely different from the modern dry-wet conditions with a N–S differential distribution. In this study palaeoclimate simulations by an AGCM coupled with land surface process model were used to explore the possible mechanisms of LGM climate in China. The results confirmed that the dry conditions in eastern China resulted from less summer precipitation due to the Pacific Subtropical High occupying eastern China and the decline in the summer monsoon. The wet conditions in western China were produced by a decrease in evaporation due to a low temperature on land surface at the LGM and increase in precipitation. Two experiments of the palaeoclimate simulations with different land surface of modern and palaeo-vegetations have been designed to test the discrepancies of simulated LGM climate with in precipitation and P–E fields. The results suggested that the feedback from the Asian land surface within the climate system would amplify and modify external forcing, leading to marked climate changes in China.  相似文献   

4.
Contributions of the nine potential dust source regions (North and South Africa, the Arabian Peninsula, Central Asia, eastern and western China, North and South America, and Australia) to the global dust budget are investigated with a global dust transport model. A six-year simulation (1990 to 1995) indicates that the greatest contributor to the global dust budget is found to be North Africa (the Sahara Desert), which accounts for 58% of the total global dust emission and 62% of the total global dust load in the atmosphere. Australian dust dominates the southern hemisphere. The dust emission and atmospheric dust load originating from East Asia (eastern and western China) are estimated to be 214 Tg yr− 1 and 1.1 Tg, respectively, which are 11% and 6% of the total global dust emission and dust load. Dust from East Asia dominates the atmospheric load over China and Mongolia (about 70%), Korea (60%), Japan (50%), and the North Pacific Ocean (40%). The contribution of dust originating from regions other than East Asia to the dust load over these East Asian countries and the North Pacific Ocean cannot be ignored. The simulated total dust deposition flux on Greenland suggests a possible overestimation of the Saharan dust and an underestimation of the East Asian dust in the Arctic region, which may be a common problem with global dust transport models. Possible reasons for the underestimation of the East Asian dust are discussed.  相似文献   

5.
The growth of two high-elevation inland lakes (at 4600 m) was analyzed using satellite imagery (2000–2005) and data were collected over the last decade (1997–2006) at a plateau meteorological station (at 4820 m) and stream gauging data from a station (at 4250 m) in central Tibet. We examined the lake water balance responses to meteorological and hydrological variables. The results show that the lake areas greatly expanded by a maximum of 27.1% (or 43.7 km2) between 1998 and 2005. This expansion appears to be associated with an increase in annual precipitation of 51.0 mm (12.6%), mean annual and winter mean temperature increases of 0.41 °C and 0.71 °C, and an annual runoff increase of 20% during the last decade. The changes point to an abrupt increase in the annual precipitation, mean temperature and runoff occurring in 1996, 1998 and 1997, respectively, and a decrease in the annual pan evaporation that happened in 1996. The timing of lake growth corresponds closely with abrupt increases in the annual precipitation and runoff and with the decrease in the annual evaporation since the mid-1990s. This study indicates a strong positive water balance in these permafrost highland lakes, and provides further evidence of lake growth as a proxy indicator of climate variability and change.  相似文献   

6.
This study simulates water resources in the Tien Shan alpine basins to forecast how global and regional climate changes would affect river runoff. The model employed annual mean values for the major characteristics of the water cycle: annual air temperature, precipitation, evapotranspiration and river runoff. The simulation was based on 304 hydro-meteorological stations, 23 precipitation sites, 328 high altitudinal points with glaciological measurements, 123 stream-gauges, and 54 evaporation sites, and it took into account topography. The findings were simulated over Tien Shan relief using a 1:500,000 scale 100 m grid resolution Digital Elevation Model. An applicable GIS-based distributed River Runoff Model was implemented in regional conditions and tested in the Tien Shan basins. The annual evapotranspiration exceeds the river runoff in the Tien Shan watersheds particularly up to 3700 m. Hypothetical climate-change scenarios in the Tien Shan predict that by 2100 river runoff will increase by 1.047 times with an increase in air temperature averaging 3 °C and an increase in precipitation averaging 1.2 times the current levels. Change in precipitation, rather than temperature, is the main parameter determining river runoff in the Tien Shan. The maximum ratio for predicted river runoff could reach up to 2.2 and the minimum is predicted to be 0.55 times current levels. This possibly dramatic change in river runoff indicates on non-linear system response caused mainly by the non-linear response of evapotranspiration from air temperature and precipitation changes. In the frame of forecasted possible climate change scenarios the probability of river runoff growth amounts 83–87% and probability of this decline is 17–13% by 2100 in the Tien Shan River basins.  相似文献   

7.
The snow cover of the Northern Patagonia Icefield (NPI) was monitored after applying the Normalized Difference Snow Index (NDSI) and the Red/NIR band ratio to 134 Moderate Resolution Imaging Spectroradiometer (MODIS) images captured between 2000 and 2006. The final results show that the snow cover extent of the NPI fluctuates a lot in winter, in addition to its seasonal behaviour. The minimum snow cover extent of the period (3600 km2) was observed in March 2000 and the maximum (11,623 km2) in August 2001. We found that temperature accounts for approximately 76% of the variation of the snow cover extent over the entire icefield. We also show two different regimes of winter snow cover fluctuations corresponding to the eastern and the western sides of the icefield. The seasonality of the snow cover on the western side was determined by temperature rather than precipitation, while on the east side the seasonality of the snow cover was influenced by the seasonal behaviour of both temperature and precipitation. This difference can be explained by the two distinct climates: coastal and continental. The fluctuations in the winter snow cover extent were more pronounced and less controlled by temperature on the western side than on the eastern side of the icefield. Snow cover extent was correlated with temperature R2 = 0.75 and R2 = 0.74 for the western and eastern sides, respectively. Since limited meteorological data are available in this region, our investigation confirmed that the change in snow cover is an interesting climatic indicator over the NPI providing important insights in mass balance comprehension. Since snow and ice were distinguished snow cover fluctuations can be associated to fluctuations in the snow accumulation area of the NPI. In addition, days with minimum snow covers of summer season can be associated to the period in which Equilibrium Line Altitude (ELA) is the highest.  相似文献   

8.
Summer 2007 was abnormally warm for many areas of southeastern Europe, the Balkan peninsula and parts of Asia Minor with departures from the seasonal means exceeding 4 °C in some areas but also distinct periods of extremely hot weather. Greece experienced very likely the warmest summer of its instrumental history with record breaking temperatures being observed at a number of stations. The historical air temperature record of the National Observatory of Athens (NOA), extending back to the 19th century, was used in order to highlight the rarity of the event. Seasonal (June to August) temperature anomalies at NOA exceeded 3 °C corresponding to more than 3 standard deviations with respect to the 1961–1990 reference period. The record value of 44.8 °C was observed at NOA on 26 June 2007 (previous record 43 °C in June 1916) during the first and most intense heat wave that affected the area. The study places summer 2007 in the climatology of the previous century and also examines whether the statistics of summer 2007 have similarities with Mediterranean summers of the future. An ensemble of regional climate model simulations undertaken for the European domain indicate that summer 2007 reflects the daily maximum temperatures that are projected to occur in the latter part of the 21st century. The analysis of temperature data from other less urbanized stations indicates that the urban heat effect in Athens contributed positively to the anomalies of the nocturnal temperatures. The abnormally hot summer of 2007 is perhaps not the proof but a strong indicator of what eastern Mediterranean summers could resemble in future.  相似文献   

9.
Simulated circum-Arctic climate changes by the end of the 21st century   总被引:1,自引:0,他引:1  
This study investigates future changes of the Arctic climate by the end of the 21st century, simulated by the regional climate model HIRHAM forced with the ECHAM5/MPI-OM general circulation model and assuming the SRES A1B emission scenario. This assessment provides the regional patterns of future circulation, temperature, and precipitation in the Arctic by the end of the 21st century. The magnitude of winter and summer temperature and precipitation is projected to increase, while their interannual variability is projected to change seasonally and is regionally dependent. The regional-scale response of the temperature and precipitation is associated with changes in storm tracks and atmospheric baroclinicity. During winter, the regions of strongest baroclinicity are shifted northward and strengthened. Changes in the seasonal temperature and precipitation are accompanied by changes in their extremes. Extreme warm and cold events are significantly projected to change, with relative changes of seasonal precipitation being larger than those of precipitation extremes.  相似文献   

10.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

11.
Rainfed tropical agriculture provides important avenue to ascertain the consequences of climate change. This is because reliability of rainfall accounts for much of the variation in agriculture in the region. In addition, the region is already hot and vulnerable from further warming. This study shows from a climate change experiment using Ricardian method in Cameroon that a 7% decrease in precipitation would cause net revenues from crops to fall US$2.86 billion and a 14% decrease in precipitation would cause net revenue from crops to fall US$3.48 billion. Increases in precipitation would have the opposite effect on net revenues. For a 2.5 °C warming, net revenues would fall by US$0.79 billion, and a 5 °C warming would cause net revenues to fall US$1.94 billion. This highlights that agriculture is not only limited by seasonality and magnitude of moisture availability, but also it is significantly impacted by climate change.  相似文献   

12.
Climatic changes over the Mediterranean basin in 2031–2060, when a 2 °C global warming is most likely to occur, are investigated with the HadCM3 global circulation model and their impacts on human activities and natural ecosystem are assessed. Precipitation and surface temperature changes are examined through mean and extreme values analysis, under the A2 and B2 emission scenarios. Confidence in results is obtained via bootstrapping. Over the land areas, the warming is larger than the global average. The rate of warming is found to be around 2 °C in spring and winter, while it reaches 4 °C in summer. An additional month of summer days is expected, along with 2–4 weeks of tropical nights. Increase in heatwave days and decrease in frost nights are expected to be a month inland. In the northern part of the basin the widespread drop in summer rainfall is partially compensated by a winter precipitation increase. One to 3 weeks of additional dry days lead to a dry season lengthened by a week and shifted toward spring in the south of France and inland Algeria, and autumn elsewhere. In central Mediterranean droughts are extended by a month, starting a week earlier and ending 3 weeks later. The impacts of these climatic changes on human activities such as agriculture, energy, tourism and natural ecosystems (forest fires) are also assessed. Regarding agriculture, crops whose growing cycle occurs mostly in autumn and winter show no changes or even an increase in yield. In contrast, summer crops show a remarkable decrease of yield. This different pattern is attributed to a lengthier drought period during summer and to an increased rainfall in winter and autumn. Regarding forest fire risk, an additional month of risk is expected over a great part of the basin. Energy demand levels are expected to fall significantly during a warmer winter period inland, whereas they seem to substantially increase nearly everywhere during summer. Extremely high summer temperatures in the Mediterranean, coupled with improved climate conditions in northern Europe, may lead to a gradual decrease in summer tourism in the Mediterranean, but an increase in spring and autumn.  相似文献   

13.
Climate change may affect the sediment generation and transportation processes and the consequent sediment flux in a river. The sensitivity of suspended sediment flux to climate change in the Longchuanjiang catchment is investigated with Artificial Neural Networks (ANNs). ANNs were calibrated and validated using sediment flux data from 1960 to 1990 during which the influence from human activities was relatively stable. The established ANN is used to predict the responses of sediment flux to 25 hypothetical climate scenarios, which were generated by adjusting the baseline temperature up to − 1, 1, 2 and 3 °C and by scaling the baseline precipitation by +/ 10% and +/ 20%. The results indicated when temperature remains unchanged, an increase in rainfall will lead to a rise in sediment flux; when rainfall level remains unchanged, an increase in temperature is likely to result in a decrease in sediment flux. Same percentage of changes in rainfall and temperature are likely to trigger higher responses in wetter months than in drier months. However, it is the combination of the change in temperature and rainfall that determines the change of sediment flux in a river. Higher sediment flux is expected to appear under wetter and warmer climate, when higher transport capacity is accompanied by higher erosion rate.  相似文献   

14.
Monthly runoff from the 34.3% glacierized tropical catchment of Llanganuco in the tropical Cordillera Blanca, Perú, is successfully simulated and compared with a measured 44 year time series. In the investigation area, the climate is characterized by all-year round homogenous temperature conditions and a strong variability in air humidity and moisture content of the atmosphere. Thus, contrary to the mid latitudes, the seasonal variation in glacier melt strongly depends on moisture-related variables, rather than on air temperature. The here presented ITGG-2.0-R model aims for these requirements. The lack of moisture-related input data other than precipitation demands for an intermediate calibration step. Net shortwave radiation, the emissivity of the atmosphere and a sublimation/melt ratio are related to precipitation amounts. Runoff is well simulated and correlates with the measured record with r2 = 0.76. Seasonally obtained r2 are only slightly smaller. On a long-term, the cumulative deviation is minor, and the mean annual cycle of runoff is reproduced rather well (r2 = 0.99). Based on four different IPCC climate change scenarios, future runoff is simulated. All runoff scenarios are modelled for the respective steady-state glacier extent. This leads to a reduction in the glacier size and a decreased amount of glacier melt. On the other hand, direct runoff increases due to larger glacier free areas. Consequently, mean annual runoff remains almost unchanged, but the seasonality intensifies considerably with more runoff during the wet and less runoff during the dry season.  相似文献   

15.
Recent studies have drawn attention to differences in the seasonal impact of the 8.2 ka event, with longer cooler summers and shorter cooler/drier winters. However, there are no data available on the simultaneity or the rate of onset of the seasonal changes in Europe. Based on the microfacies and geochemical analyses of seasonally laminated varved sediments from Holzmaar, we present evidence of differences in duration and onset time of changes in summer temperature and winter rainfall during the 8.2 ka event. Since both summer and winter climate signals are co-registered within a single varve, there can be no ambiguity about the phasing and duration of the signals. Our data show that the onset and withdrawal of the 8.2 ka summer cooling occurred within a year, and that summer rains were reduced or absent during the investigated period. The onset of cooler summers preceded the onset of winter dryness by ca. 28 years. In view of the differences in nature and duration of the impact of the 8.2 ka event we suggest that a clearer definition of the 8.2 ka event (summer cooling or winter cooling/dryness) needs to be developed. Based on regional comparison and available modelling studies we also discuss the roles of solar variability, changes in North Atlantic Thermohaline circulation, and North Atlantic Circulation (NAO) during the period under consideration. Wavelet analyses of seasonal laminae indicates that the longer NAO cycles, linked to changes in the N. Atlantic temperatures, were more frequent during the drier periods.  相似文献   

16.
Modeling mineral dust emissions from Chinese and Mongolian deserts   总被引:6,自引:0,他引:6  
The present study investigates the frequency and intensity of mineral dust emissions over the deserts of eastern Asia from 1996 to 2001. Mineral dust emissions are simulated using a physical dust emission scheme over a region extending from 35.5°N to 47°N and from 73°E to 125°E. The input parameters required by the dust emission model are (1) surface features data including aerodynamic roughness length, soil dry size distribution and texture; and (2) meteorological surface data, mainly wind speed, soil moisture and snow cover. The way by which these surface features and meteorological data can be assessed is described and discussed. The influence of soil moisture and snow cover is taken into account and their effects on simulated dust emission are quantified.The simulations reproduce on a daily basis the location and intensity of the severe events of April 1998 and spring 2001 as recorded by the meteorological stations and/or described in various studies. Based on 6 yr of simulations, the main dust source regions are identified and their relative contributions to the total dust emissions are quantified.The seasonal cycle of the dust storms frequency is well reproduced with a maximum in spring. The simulations suggest that it is mainly controlled by the emissions occurring in the Taklimakan desert in latter spring and in summer, and by those occurring in the northern deserts of China in winter. The Taklimakan desert appears to be the most frequent and steady source of dust emissions during the studied period. On the other hand, in the Gobi desert, only a few dust emission events are simulated, but the dust amount emitted during each event is generally very large. In the northern deserts of China, dust emissions are frequent and their intensity is variable.These results show an important annual and inter-annual variability of the emitted dust (between 100 Mt yr− 1 and 460 Mt yr− 1), mainly controlled by the occurrence of severe events in the Gobi desert and in the northern deserts of China.  相似文献   

17.
To evaluate the consequences of possible future climate changes and to identify the main climate drivers in high latitudes, the vegetation and climate in the East Siberian Arctic during the last interglacial are reconstructed and compared with Holocene conditions. Plant macrofossils from permafrost deposits on Bol'shoy Lyakhovsky Island, New Siberian Archipelago, in the Russian Arctic revealed the existence of a shrubland dominated by Duschekia fruticosa, Betula nana and Ledum palustre and interspersed with lakes and grasslands during the last interglacial. The reconstructed vegetation differs fundamentally from the high arctic tundra that exists in this region today, but resembles an open variant of subarctic shrub tundra as occurring near the tree line about 350 km southwest of the study site. Such difference in the plant cover implies that, during the last interglacial, the mean summer temperature was considerably higher, the growing season was longer, and soils outside the range of thermokarst depressions were drier than today. Our pollen-based climatic reconstruction suggests a mean temperature of the warmest month (MTWA) range of 9–14.5 °C during the warmest interval of the last interglacial. The reconstruction from plant macrofossils, representing more local environments, reached MTWA values above 12.5 °C in contrast to today's 2.8 °C. We explain this contrast in summer temperature and soil moisture with a combination of summer insolation higher than present and climatic continentality in arctic Yakutia stronger than present as result of a considerably less inundated Laptev Shelf during the last interglacial.  相似文献   

18.
Influence of upper air conditions on the Patagonia icefields   总被引:1,自引:1,他引:0  
Upper-air conditions archived in the NCEP-NCAR Reanalysis have been used to investigate changes in precipitation and snowfall over the Patagonia icefields during 1960–99. Apparently, whereas total precipitation has not changed, warming has caused a decrease in the amount falling as snow. Precipitation at a site is taken to be proportional to the product of the relative humidity and the component of the wind in a particular critical direction, both at 850 hPa ( 1400 m) at a point over the ocean to the west of the icefields; whether it falls as rain or snow is assumed to depend on whether the temperature at the elevation of the site is above or below + 2 °C. The critical direction is assumed to be 270°, which is perpendicular to the north–south trending Andes and is also the prevailing wind direction in this zone of strong westerlies. Because of the scarcity of precipitation records on or near the icefields, the constant of proportionality cannot be determined, so the investigation is limited to examining relative changes in those upper air variables. Warming at 850 hPa has been 0.5 °C over the 40 years, both winter and summer, with the effects that it has: (1) shifted from snow to rain 5% of the precipitation, the total of which has changed little, and (2) increased annual melt in the ablation areas by 0.5 m w.e. The icefields have been losing mass since at least 1870, so this 40-year trend represents only an acceleration of the longer-term trend of adjusting to climate change since the Little Ice Age.  相似文献   

19.
The prairie-forest transition in midcontinental North America is a major physiognomic boundary, and its shifts during the Holocene are a classic example of climate-driven ecotonal dynamics. Recent work suggests asymmetrical Holocene behavior, with a relatively rapid early Holocene deforestation and more gradual reforestation later in the Holocene. This paper presents a new synthesis of the Holocene history of the Great Plains prairie-forest ecotone in the north-central US and central Canada that updates prior mapping efforts and systematically assesses rates of change. Changes in percent woody cover (%WC) are inferred from fossil pollen records, using the modern analog technique and surface-sediment pollen samples cross-referenced against remotely sensed observations. For contemporary pollen samples from the Great Plains, %WC linearly correlates to percent arboreal pollen (%AP), but regression parameters vary interregionally. At present, %AP is consistently higher than %WC, because of high background levels of arboreal pollen. Holocene maps of the eastern prairie-forest ecotone agree with prior maps, showing a rapid decrease in %WC and eastward prairie advance between 10,000 and 8000 ka (1 ka = 1000 calibrated years before present), a maximum eastward position of the ecotone from 7 to 6 ka, and increased %WC and westward prairie retreat after 6 ka. Ecotone position is ambiguous in Iowa and southeastern Minnesota, due to a scarcity of modern analogs for early-Holocene samples with high Ulmus abundances and for samples from alluvial sediments. The northern prairie-forest ecotone was positioned in central Saskatchewan between 12 and 10 ka, stabilized from 10 to 6 ka despite decreases in %WC at some sites, then moved south after 6 ka. In both east and north, ecotonal movements are consistent with a dry early Holocene and increasing moisture availability after 6 ka. Sites near the ecotone consistently show an asymmetric pattern of abrupt early Holocene deforestation (< 300 years) and gradual reforestation after 6 ka. Early Holocene decreases in %WC are faster than the corresponding drops in %AP, because the analog-based %WC reconstructions correct for the high background levels of arboreal pollen types that blur temporal variations in %AP. For example, at Elk Lake, the %AP decline lasts 1000 years, whereas the %WC decline occurs between adjacent pollen samples, approximately 300 years apart. Thus, early Holocene deforestation may have been even more abrupt than previously recognized. Rapid deforestation likely was promoted both by rapid climate changes around 8.2 ka and positive fire-vegetation feedbacks. Non-linear vegetational responses to hydrological variability are consistent with 1) other paleorecords showing rapid die-offs of some eastern tree species in response to aridity and 2) observations of threshold-type ecological responses to recent climate events. The 21st-century trajectory for the Great Plains prairie-forest ecotone is uncertain, because climate models differ over the direction of regional precipitation trends, but future drying would be more likely to trigger threshold-type shifts in ecotone position.  相似文献   

20.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号