首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the flows in the Palaeocene lava pile remnant of Skyeare members of the Skye Main Lava Series (SMLS), comprisingtransitional basalts and two associated suites of evolved lavas.The first suite evolves through Fe-rich hawaiites and mugearitesto benmoreites, and the second suite evolves through Fe-poorintermediates to trachytes. Ca-rich, alkali-poor olivine tholeiites(the Preshal Mhor magma type) occur as sparse flows in the stratigraphicallyhighest parts of the lava pile remnant and are abundant in thedyke swarm transecting it. Initial 87Sr/86Sr ratios rangingfrom 0.70308 to 0.70571 in 45 SMLS samples show no significantcorrelation with degree of zeolitization (H2O+), silica saturation,or 87Rb/86Sr. A moderately good negative correlation with totalSr confirms published Pb-isotope evidence of interaction withancient, sialic crust. Details of the (87Sr/86Sr)l versus Srpattern are consistent with previous hypotheses that the SMLSbasalt-benmoreite suite evolved at a depth near the Moho, whilstthe low-Fe trend to trachyte resulted from near-surface basaltfractionation. (87Sr/86Sr)l values ranging from 0.70307 to 0.70621 for PreshalMhor basalts show a strong positive correlation with total Sr,consistent with a model of extensive fractionation within theupper crust of a mantle-derived low 87Sr/86Sr-low Sr magma,which became progressively contaminated with comparatively radiogeniccrustal Sr. The lowest measured (87Sr/86Sr)l values of 0.70307and 0.70308, for a Preshal Mhor basalt and for an SMLS basaltrespectively, are consistent with the hypothesis that thesetwo magma types were produced by successive phases of partialmelting from a single volume of upper mantle. (87Sr/86Sr)l values for additional miscellaneous basaltic lavas,dykes and major intrusives from Skye and from nearby Isle ofMull exhibit considerable variability within the range 0.7038to 0.7072, whilst three basaltic dykes from Northern Englandare in the range 0.7089 to 0.7123. The latter values overlapwith published (87Sr/86Sr)l values for some of the granitesin the Tertiary Province of northwest Scotland and indirectlyremove objections based on Sr-isotopic arguments to the genesisof the granites by fractionation of basalt contaminated withcrustal Sr, but neither prove this nor disprove large-scalecrustal partial fusion.  相似文献   

2.
The Tertiary to Recent basalts of Victoria and Tasmania havemineralogical and major element characteristics of magmas encompassingthe range from quartz tholeiites to olivine melilitites. Abundancesof trace elements such as incompatible elements, including therare earth elements (REE), and the compatible elements Ni, Coand Sc, vary systematically through this compositional spectrum.On the basis of included mantle xenoliths, appropriate 100 Mg/Mg+ Fe+2 (68–72) and high Ni contents many of these basaltsrepresent primary magmas (i.e., unmodified partial melts ofmantle peridotite). For fractionated basalts we have derivedmodel primary magma compositions by estimating the compositionalchanges caused by fractional crystallization of olivine andpyroxene at low or moderate pressure. A pyrolite model mantlecomposition has been used to establish and evaluate partialmelting models for these primary magmas. By definition and experimentaltesting the specific pyrolite composition yields parental olivinetholeiite magma similar to that of KilaeauIki, Hawaii (1959–60)and residual harzburgite by 33 per cent melting. It is shownthat a source pyrolite composition differing only in having0.3–0.4 per cent TiO2 rather than 0.7 per cent TiO2, isable to yield the spectrum of primary basalts for the Victorian-Tasmanianprovince by 4 per cent to 25 per cent partial melting. The mineralogiesof residual peridotites are consistent with known liquidus phaserelationships of the primary magmas at high pressures and thechemical compositions of residual peridotite are similar tonatural depleted or refractory lherzolites and harzburgites.For low degrees of melting the nature of the liquid and of theresidual peridotite are sensitively dependent on the contentof H2O, CO2 and the CO2/H2O in the source pyrolite. The melting models have been tested for their ability to accountfor the minor and trace element, particularly the distinctivelyfractionated REE, contents of the primary magmas. A single sourcepyrolite composition can yield the observed minor and traceelement abundances (within at most a factor of 2 and commonlymuch closer) for olivine melilitite (4–6 per cent melt),olivine nephelinite, basanite (5–7 per cent melt), alkaliolivine basalt (11–15 per cent melt), olivine basalt andolivine tholeiite (20–25 per cent melt) provided thatthe source pyrolite was already enriched in strongly incompatibleelements (Ba, Sr, Th, U, LREE) at 6–9 x chondritic abundancesand less enriched (2.5–3 x chondrites) in moderately incompatible(Ti, Zr, Hf, Y, HREE) prior to the partial melting event. Thesources regions for S.E. Australian basalts are similar to thosefor oceanic island basalts (Hawaii, Comores, Iceland, Azores)or for continental and rift-valley basaltic provinces and verydifferent in trace element abundances from the model sourceregions for most mid-ocean ridge basalts. We infer that thismantle heterogeneity has resulted from migration within theupper mantle (LVZ or below the LVZ) of a melt or fluid (H2O,CO2-enriched) with incompatible element concentrations similarto those of olivine melilitite, kimberlite or carbonatite. Asa result of this migration, some mantle regions are enrichedin incompatible elements and other areas are depleted. Although it is possible, within the general framework of a lherzolitesource composition, to derive the basanites, olivine nephelinitesand olivine melilitites from a source rock with chondritic relativeREE abundances at 2–5 x chondritic levels, these modelsrequire extremely small degrees of melting (0.4 per cent forolivine melilitite to 1 per cent for basanite). Furthermore,it is not possible to derive the olivine tholeiite magmas fromsource regions with chondritic relative REE abundances withoutconflicting with major element and experimental petrology argumentsrequiring high degrees (15 per cent) of melting and the absenceof residual garnet. If these arguments are disregarded, andpartial melting models are constrained to source regions withchondritic relative REE abundances, then magmas from olivinemelilitites to olivine tholeiites can be modelled if degreesof melting are sufficiently small, e.g., 7 per cent meltingfor olivine tholeiite. However, the source regions must be heterogenousfrom 1 to 5 x chondritic in absolute REE abundances and heterogerieousin other trace elements as well. This model is rejected in favorof the model requiring variation in degree of melting from 4per cent to 25 per cent and mantle source regions ranging fromLREE-enriched to LREE-depleted relative to chondritic REE abundances.  相似文献   

3.
The recognition in Skye of olivine tholeiite lava flows, withlow alkali (1?7–1?9 per cent Na2O,0?04–0?14 percent K2O) and high calcium (12?7 per cent CaO), is reported.An account of their mineralogy and petrology, seven major elementanalyses, some trace element data, and the results of one atmospheremelting experiments are presented. These lavas, quite distinctfrom the plateau lavas in Skye, are postulated as representingthe early stages of a central cone volcano in S.W. Skye andthought to be closely related to the parental magmas of theCuillins layered basic intrusion complex.  相似文献   

4.
Mineralogical data for xenoliths occurring as inclusions in the fissure erupted alkali basalts and the basanitic tuffs of Anjouan reveal three xenolith suites: 1) the lherzolites, 2) the dunites and wehrlites, 3) the gabbros and syenites. The dunite-wehrlite suite and the gabbro suite are shown to represent high-level cumulate sequences resulting from ankaramitic fractionation of the hy-normative shield-building lavas and cotecictic fractionation of the alkali basalt lavas respectively, whilst the syenitic xenoliths represent evolved high-level intrusions. Mineralogical and rare earth element (REE) data indicate that the most likely origin for the spinel lherzolite xenoliths is by extraction of a basaltic phase from spinel peridotite, leaving a light REE-poor spinel lherzolite residuum. REE models, constructed using model peridotite assemblages, imply that the hy-normative basalt lavas may be derived by partial melting of spinel peridotite at pressures of <20–25 kb leaving a residual lherzolite, and that the alkali basalt and basanite melts are formed by small degrees of melting of a garnet-peridotite source at pressures of >20–25 kb. The spinel lherzolite source for the hy-normative basalts has been accidentally sampled during explosive eruption of the alkali basalt and basanite magmas.  相似文献   

5.
Picritic lava flows near Lijiang in the late Permian Emeishanflood basalt province are associated with augite-phyric basalt,aphyric basalt, and basaltic pyroclastic units. The dominantphenocryst in the picritic flows is Mg-rich olivine (up to 91·6%forsterite component) with high CaO contents (to 0·42wt %) and glass inclusions, indicating that the olivine crystallizedfrom a melt. Associated chromite has a high Cr-number (73–75).The estimated MgO content of the primitive picritic liquidsis about 22 wt %, and initial melt temperature may have beenas high as 1630–1690°C. The basaltic lavas appearto be related to the picritic ones principally by olivine andclinopyroxene fractionation. Age-corrected Nd–Sr–Pbisotope ratios of the picritic and basaltic lavas are indistinguishableand cover a relatively small range [e.g. Nd(t) = –1·3to +4·0]. The higher Nd(t) lavas are isotopically similarto those of several modern oceanic hotspots, and have ocean-island-likepatterns of alteration-resistant incompatible elements. Heavyrare earth element characteristics indicate an important rolefor garnet during melting and that the lavas were formed byfairly small degrees of partial melting. Rough correlationsof isotope ratios with ratios of alteration-resistant highlyincompatible elements (e.g. Nb/La) suggest modest amounts ofcontamination involving continental material or a relativelylow-Nd component in the source. Overall, our results are consistentwith other evidence suggesting some type of plume-head originfor the Emeishan province. KEY WORDS: Emeishan; flood basalts; picrites; mantle plumes; late Permian  相似文献   

6.
The recognition in Skye of olivine tholeiite lava flows, withlow alkali (1·7–1·9 per cent Na2O, 0·04–0·14per cent K2O) and high calcium (12·7 per cent CaO), isreported. An account of their mineralogy and petrology, sevenmajor element analyses, some trace element data, and the resultsof one atmosphere melting experiments are presented. These lavas,quite distinct from the plateau lavas in Skye, are postulatedas representing the early stages of a central cone volcano inS.W. Skye and thought to be closely related to the parentalmagmas of the Cuillins layered basic intrusion complex. * Present address: Department of Earth & Space Sciences, S.U.N.Y. at Stony Brook, N.Y. 11794, U.S.A.  相似文献   

7.
The Jormua Ophiolite exposes a unique fragment of Red Seatypeoceanic crust formed in a setting related to continental break-up1950 Ma ago. Two distinct types of basalt are represented: the‘early dykes’ and the ‘main basalt suite’.‘Early dykes’ have fractionated (H) REE patterns,OIB-like trace element patterns, low Zr/Nb (6) and ENd(1.95Ga)–0.6, indicative of their derivation from an enrichedsource. The remaining dykes and all lavas belong to the second,E-MORB-like ‘main basalt suite’, which is characterizedby high mg-number and Cr contents, flat REE patterns, Zr/Nb= 6–17, chondritic Th/Ta and only moderately depletedisotopic signatures [END (1.95 Ga)+1.9]. Most ‘main suite’samples cannot be related solely by fractional crystallizationto a common parental magma. Rather, they represent distinctmelt fractions that underwent variable amounts of chromite +olivine plagioclase fractionation during ascent. A significantpart of the compositional diversity of the ‘main basaltsuite’ can be explained by mixing a depleted source witha relatively uniform proportion of an enriched component similarto that represented by the OIB-like ‘early dykes’.It is probable that during the latest stages of continentalrifting the OIB-type melts metasomatized the upper part of thedepleted asthenospheric mantle, which became the source of the‘main basalt suite’ soon after the old continentallithosphere was ruptured. The complete absence of any evidencefor a subduction-related component in the basalts implies thatJormua is not a back-are ophiolite. *Fax: +358 0 462 205. e-mail: petri.peltonen{at}gsf.fi  相似文献   

8.
Mineral Chemistry, and major and trace element variations ofthe basalts from Klyuchevskoy, the world's most active islandare volcano, are most consistently explained by the persistenceof a non-steady state, erupting, recharging, and fractionatingmagma chamber in which fractionation of a parental high-MgObasalt melt produces high-Al2O3 basalt. Although fractionalcrystallization is the dominant controlling mechanism, periodicrecharge with a more primitive high-MgO basalt is also an importantprocess contributing to the chemical evolution of the magmas.Hybrid basalts are the mixed product of high-Al2O3 basalt rechargedwith high-MgO basalt. The lavas range in composition from high-MgO, low-Al2O3 ( 12wt. % MgO, 14 wt. % Al2O3) to high-Al2O3, low-MgO ( 18 wt. %Al2O3, 4 wt. % MgO). The high-MgO lavas are characterized byphenocrysts of olivine (cores FO90–80 and rims FO85–75)with chromite inclusions [Cr/(Cr + Al)0.7], clinopyroxene (Wo46–42En48–42Fs15–7),and the rare occurrence of orthopyroxene (En72–70). Allthe phenocrysts are normally zoned and set in a groundmass ofplagioclase, pigeonite, clinopyroxene, magnetite, orthopyroxene.The high-Al2O3 basalts contain plagioclase (An85–55),olivine (Fo80–65), clinopyroxene (Wo45–30En50–38Fs23–11), orthopyroxene (En72–70) phenocrysts, that preserve bothnormal and reverse zoning in a groundmass of plagioclase, pigeonite,olivine, clinopyroxene, magnetite, orthopyroxene. Hybrid basaltshave characteristics of both high-MgO basalts and high-Al2O3basalts and preserve complicated normal-to-reverse, reverse-to-normal,and normally zoned phenocrysts. No hydrous minerals are presentin any of the lavas. The varied basaltic magmas erupted from Klyuchevskoy are derivedfrom a magma chamber(s) located near the base of the Kamchatkacrust (pressures 0.5–0.9 GPa) and characterized by relativelyhigh crystallization temperatures, some in excess of 1150C.Under these conditions, the fractionation of a parental high-MgOmagma, produced principally from the melting of a fluid-fluxed,peridotitic mantle wedge, results in the production of a chemicallydiverse spectrum of basalts ranging from high-MgO, low-Al2O3to high-Al2O3, low-MgO basalt, traversing the relatively primitiveend of both the calc-alkalic and tholeiitic differentiationtrends.  相似文献   

9.
The Lower Eocene lavas of northern Skye are preserved over anarea of approximately 1500 km2 in a shallow faulted oval basin.Seventy-four new major element chemical analyses have been madeof specimens showing minimal post-consolidation alteration.These demonstrate that the early volcanics vary from hypersthene-tonepheline-normative basalts; the former containing less TiO2and P2O5 but more K2O than the latter. The compositions of thesebasalts straddle the low-pressure thermal divide near the criticalplane of silica under-saturation, the normative ‘join’OI–Pl–Cpx; implying that their variation was causedby high-pressure, upper mantle processes. The unusual incompatibleelement pattern of the lavas suggests that a K-rich mantle phase,tentatively taken to be phlogopite, was involved in their genesis.At subvolcanic pressures the spectrum of basaltic magmas wassplit by the join olivine-plagioclase-augite, producing twodivergent trends; from alkali basalts, via relatively Si- andK-poor and Fe- and Ti-rich hawaiites and mugearites to benmoreite,and from hypersthene-normative basalts, via relatively Si- andK-rich and Fe- and Ti-poor intermediates to trachyte. One-atmospheremelting experiments on 21 lavas are used to supplement the chemicalinvestigation of these low-pressure trends. Two flows of aphyric, low-alkali tholeiitic basalt, with compositionsquite distinct from all other Skye lavas, have been discoveredinterleaved among the alkali-rich rocks near the top of thevolcanic pile, at present exposure level. The almost patternlesschemical variation of all the lavas with time suggests thatmagma chambers, as conventionally envisaged, did not exist beneaththe Skye volcanic field, but rather that fissure eruptions werefed from a sponge-like plexus of conduits and small reservoirs,within which magma, affected to varying extents by upper mantleprocesses, remained for varying periods, pursuing low-pressurefractionation trends. The chemistry of the main Skye basaltsand the low-alkali tholeiites, plus available data on otherpost-lava Skye basic igneous rocks, such as the Cuillin LayeredIntrusion, other gabbros in the central complexes, and late-stagealkali dolerite dykes, are all combined in an attempt to ascribethe variation of the basic magmas which approached or reachedthe surface of Skye to the growth, culmination, and waning stagesof a thermal event in the upper mantle beneath that area.  相似文献   

10.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

11.
The origin and evolution of the magma(s) involved in the formationof the olivine tholeiite cone-sheets which invade the 60-MaCuillin Igneous Complex, Isle of Skye, have been investigatedusing mineral chemistry data together with whole-rock major-and trace-element and isotope (Sr and Nd) geochemistry data.The most primitive compositions identified are almost identicalto those of the basalts being erupted at the present day alongthe spreading centre in Iceland. Rare examples of lavas fromthe slightly older lava pile of west-central and north Skye,together with a large number of dykes from the axial zone ofthe Skye Main Swarm, are of similar composition and are referredto as being of the Preshal More Basalt type (spelling is accordingto current Ordnance Survey of Great Britain maps). The intra-suitecompositional variation exhibited by the cone-sheets can beexplained in terms of relatively low-pressure fractionationof the three-phase assemblage olivine+clinopyroxene+plagioclasein their cotectic proportions of 10: 35: 55. Modelling of major-and compatible trace-element data indicates that the most evolvedcomposition may be derived by 60% crystallization of the leastevolved composition. Incompatible trace-element modelling impliesgreater degrees of crystal-liquid fractionation: Y and Zr indicate64 and 68% crystallization, respectively, whereas the rare earthelements (Eu, Yb, Gd, and Ce) indicate between 71 and 75% crystallization.This decoupled behaviour of compatible and incompatible elementsis attributed to the cone-sheet magma(s) evolving in a subjacentmagma chamber, before final emplacement in the overlying crust.Sr- and Nd-isotope data indicate that the cone-sheet magma(s)assimilated upper-crustal lithologies during fractional crystallization,most likely involving amphibolite facies gneiss of the LewisianGneiss Complex. This style of simultaneous assimilation andfractional crystallization (AFC) process in the upper crustfor the Skye cone-sheet magma(s) is in direct contrast to theprocesses identified for the magmas which produced the bulkof the lava field of west-central and north Skye, where assimilationoccurred after fractionation. The cone-sheet magmas were generatedby relatively large degrees of partial melting of a depletedmantle source associated with significant lithospheric stretching.The cause of this depletion, together with the temporal relationshipsbetween the cone-sheet magmas and the dominant transitionalmagmas of the Skye lava field and sill complex, are also discussed. * Reprint request to B. R. Bell  相似文献   

12.
Petrology of the Western Reykjanes Peninsula, Iceland   总被引:3,自引:3,他引:3  
The active tholeiitic volcanic zone of the Reykjanes Peninsulaconsists of five volcanic fissure swarms, the two westernmostof which are the subject of this petrological study. The recent(less than 12,000 years) extrusives of the swarms group morphologicallyand petrographically into small picrite basalt lava shields,large olivine tholeiite lava shields and tholeiite fissure lavas;formed in that chronological succession. The picrite basalts exhibit a primitive mineralogy with chromite,olivine (Fo 89) and plagioclase (An 90) as phenocrysts and mayrepresent a primary liquid from the mantle. Simultaneous crystallizationof olivine, plagioclase and augite to form glomerocrysts inthe fissure lavas indicate low pressure cotectic crystallizationconditions. Twenty-eight new major element chemical analyses of the lavasare presented. They are generally characterized by a low contentof alkalies and high CaO. The lavas constitute two main suites,a lava shield suite and a fissure lava suite. There is a positivecorrelation between the volume of individual lavas and the contentof incompatible elements of the lavas within each group. Likewisethere is an overall chemical trend through time demonstrated,for example, by a rise in K2O from about 0.02 per cent to 0.24per cent during the last, approximately, 12,000 years. There is an apparent chemical zoning within each volcanic swarmsuch that the most evolved and youngest lavas are found in thecentral axial area of the swarm. This central area is also characterizedby graben subsidence, high magnetic anomalies and high temperaturethermal areas, all indicative of shallow magma reservoir(s).In spite of indications of fractional crystallization in theevolution of the olivine tholeiites and tholeiites, some otherprocesses must be sought to explain the volume chemistry relations.Cyclic volcanic activity is tentatively suggested to explainthe observed regular temporal variations within the swarm, eachcycle starting with the formation of picrite basalts.  相似文献   

13.
The primitive lavas of the Skye Main Lava Series (SMLS) arebasaltic rocks ranging from ne- to hy-normative, and definedas having MgO>7%. They have evolved by olivine(plus minorCr-spinel) fractionation from more picritic parental materialAn artificial data-set has been generated by normalizing allcompositions to 15% MgO by fractional addition of olivine, todefine compositional characteristics of primary magmas. Themost striking feature of the data-set is a very strong negativecorrelation between Si and Fe, as is seen in many oceanic alkalibasalt suites and in localized data-sets from mid-ocean ridgeswhen normalized for fractional crystallization. The SMLS dataare comparable to the compositions of equilibrium melts producedexperimentally by Hirose & Kushiro (Earth and PlanetaryScience Letters, 114, 477–489, 1993) from the relativelySi- and Fe-rich starting composition HK-66. Estimates of depthsand temperatures of last equilibration of the SMLS magmas withtheir mantle source have been made, on the assumption that mantlemelting may have been an equilibrium process. On this basis,it appears that primary magmas, containing 13–15% MgO,were generated by decompressive melting of abnormally hot mantle(estimated minimum mantle potential temperature, TP 1440C),associated with the Iceland plume. Melting was initiated inthe garnet stability field, and segregation is estimated tohave taken place over the pressure range 18–36 kbar (60–112-kmdepth) and a temperature range of 1390–1510 C. The P–Ttrajectory of segregation appears to coincide closely with estimatesof the solid + liquid adiabatfor mantle melting. Alkali basaltswere segregated from the greatest depths and olivine tholeiitesfrom higher levels, though the majority of magmas were derivedfrom near the top of the melting column. After segregation,magmas ascended to the surface, cooling at the rate of 3C/km,and were erupted in a comparatively narrow temperature rangeclose to 1200C. The suitability of HK-66 as a general modelfor mantle composition in ascending plumes is discussed, asmost within-plate primitive basalts in oceanic environmentsshare the same Fe-rich character as the SMLS, in which theycontrast with normal ridge-related magmas. Within-plate plumesmay perhaps tap mantle of abnormally high Fe/Mg, though thepossibility that compositional differences in plume-relatedand normal ridge-related magmas are generated by contrasts inprocess cannot yet be excluded. If, however, a relatively Fe-richreservoir exists deep within the mantle, and acts as the sourcefor plume-related magmatism, then ultimately a global positivecorrelation should exist between estimates ofTp and the Fe/Mgratio of the sources for individual suites. Corresponding author  相似文献   

14.
Basalt–basaltic andesite (<55 wt % SiO2) and dacite–rhyolite(66–74 wt % SiO2) are the predominant eruptive productsin the Sumisu caldera volcano, Izu–Bonin arc, Japan. Themost magnesian basalt (8·5% MgO), as well as some ofthe other basalts, has a low Zr content (20–25 ppm), andcannot yield basalts with higher Zr contents (29–40 ppm)through fractionation and/or assimilation. The high- and low-Zrbasalts have different phenocryst assemblages, olivine, plagioclaseand pyroxene phenocryst chemistries, REE (rare earth element)patterns, and fluid-mobile element/immobile element ratios.Estimated primary olivine compositions are more magnesian (>Fo91)in the low-Zr basalts compared with those in high-Zr basalts(<Fo89). The low-Zr basalts contain up to 11 vol. % augite,but many high-Zr basalts are free of augite, which appears onlyin their more differentiated products. The low-Zr basalts areconsidered to be hydrous magmas in which olivine crystallizesfirst followed by augite and plagioclase, whereas the high-Zrbasalts are dry. The low-Zr basalts have higher U/Th ratiosthan the high-Zr basalts. We suggest that both dry and wet primarybasalts existed in the Sumisu magmatic system, each having differenttrace element concentrations, mineral assemblages and mineralchemistry. The lower contents of Zr and light REE and magnesianprimary olivines in the wet basalts could have resulted froma higher degree of partial melting (20%) of a hydrous sourcemantle compared with 10% melting of a dry source mantle. TheSr, Nd and Pb isotope compositions of the wet and dry basaltsare similar and are limited in range. These lines of evidenceindicate that a mantle diapir model might be applicable to satisfythe configuration of such a mantle source region beneath a singlevolcanic system such as Sumisu. KEY WORDS: degree of melting; hot fingers; isotopes; mantle diapir; mantle wedge  相似文献   

15.
The Pliocene-Holocene lavas of the Snake River Plain, Idaho, U.S.A., have a bimodal composition range, consisting predominantly of basalts (olivine-tholeiites), with subordinate intercalated tholeiitic andesites but with very few analyses falling between these groups. The more-magnesian of the tholeiitic andesites contain more total Fe, alkalis, TiO2 and P2O5 but less SiO2 than the less-magnesian basalts. Derivation of the tholeiitic andesites from the basalts by low-pressure fractional crystallization or by major-element crustal contamination does not seem possible, although some minor-element exchange with ancient crust apparently has occurred. Two lavas, representative of the least-magnesian basalts and the most-magnesian tholeiitic andesites, respectively, have been subjected to anhydrous experimental studies within their melting ranges at pressures up to 35kb. Both appear to show four-phase points on their liquidi at about 8kb and these are thought to have genetic significance. Microprobe analyses of the interstitial glasses in partially-crystalline runs on the basalt between 8 and 12kb show that these reproduce all the characteristic features of the Snake River Plain most-magnesian tholeiitic andesites, notably their reduced Si-saturation. The compositions of the most Mg-rich Snake River Plain basalts are such that they may perhaps be primary magmas, produced by partial fusion of a relatively Fe-rich spinel-lherzolite upper mantle at 50 to 60km depth; a proposal which accords well with the geophysics of this currently-active region. Partial crystallization of batches of this magma, delayed during ascent within the crust at depths of about 30 km, is thought to have given rise to the tholeiitic andesites.  相似文献   

16.
Ultrapotassic basaltic lavas erupted 3.4–3.6 m.y. ago(K/Ar) in the central Sierra Nevada and originated by partialmelting of a phlogopite-enriched, garnet-bearing upper mantlesource. Ultrapotassic basanites (K2O: 5–9 per cent), whichare spatially related to contemporaneous potassic olivine basalts(K2O: 3–5 per cent) and alkali olivine basalts (K2O: 1–3per cent), contain the K2O-bearing minerals phlogopite, sanidine,and leucite as well as olivine, diopside, apatite, magnetite,and pseudobrookite. The presence and modal abundance of theK2O-bearing minerals closely reflects the east to west increasein K2O throughout the basaltic suite. Many lines of evidence support the derivation of the ultrapotassicbasanites and the related basalts from an upper mantle source:TiO2 in phlogopite phenocrysts and groundmass crystals, 2–3and 7–9 per cent respectively, support phlogopite phenocrystcrystallization at high pressure, whole rock Mg values (100Mg/Mg + 0.85 Fe) range from 66–78, phlogopite-rich pyroxeniticand periodotitic nodules are included in some flows, and geobarometriccalculations indicate depths of generation at 100–125km. Also, model calculations show that the major, rare earth,and trace elements, except for Ba, Rb, and Sr, can be accuratelygenerated by 1.0–2.5 per cent melting of a phiogopite-and garnet-bearing clinopyroxene-rich upper mantle source. Partialmelting occurred after a general upper mantle enrichment beneaththe Sierra Nevada, the phlogopite- and clinopyroxene-rich sourceof the ultrapotassic lavas being the extreme result of the enrichmentprocess. Clinopyroxene enrichment of the upper mantle probablyoccurred by introduction of a partial melting fraction intothe upper mantle source areas. Enrichment of the upper mantlein the alkali and alkali-earth elements was not accomplishedby a partial melt, but resulted from influx of a fluid phaserich in Ba, K, Rb, Sr, and, probably, H2O The continuous rangein K2O of the erupted lavas implies that the upper mantle enrichmentis a cumulative process. The inverse relationship in the SierraNevada between uplift and the K2O content of the erupted basaltsimplies that a critical relationship may exist between upliftand upper mantle enrichment.  相似文献   

17.
New Pb isotope analyses are reported for forty-seven basic,intermediate and acid Tertiary igneous rocks from the Isle ofSkye and adjacent regions of northwest Scotland. New Sr isotopeanalyses and two Rb/Sr isochron dates are also reported forthe acid igneous rocks. These results are combined with publishedSr and Nd isotope data for Tertiary igneous rocks from Skyeand adjacent regions in order to examine the genesis and evolutionof Tertiary magmas in the Isle of Skye. Pb isotope analyses form a linear array on a Pb/Pb isochrondiagram, with a slope yielding an apparent age of 2920 ±70m.y. (2), interpreted as a mixing line between ca. 2900 m.y.-oldcrustal Pb and 60 m.y.-old mantle-derived Pb. Combined isotopicdata support a model of selective crustal Pb, Sr and Nd contaminationof basic and intermediate mantle-derived magmas, without significantmodification of major-element composition. This contaminationprocess is probably due to the breakdown of LIL-element-enrichedaccessory mineral phases, and does not necessarily produce linearmixing lines on isotope ratio plots of different elements. SkyeRedhills epigranites contain a predominant fraction of acidmagma which differentiated from mantle-derived basic precursors,and a subsidiary fraction of upper crustal melt. The proportionof this melt is estimated to rise from less than 10 per centin the older granites to around 30 per cent in the younger. Isotopic and geochemical data are used to draw conclusions aboutthe differentiation histories of the four principal magma typesof Skye: the Fe-rich and Fe-poor members of the Skye Main LavaSeries, Preshal Mhor Basalts and Redhills epigranites.  相似文献   

18.
The Gough Island lavas range from picrite basalt through tosodalite-bearing aegirine-augite trachyte. The basaltic lavasare predominantly nepheline normative alkali basalts, althougha group of hypersthene normative tholeiitic basalts does occur.The oldest lavas on the island, represented by the Lower Basaltseries, are approximately 1?0 m.y. old and the youngest arethe Upper Basalts with an age of {small tilde} 0?13 m.y. Relatively coherent variations are described by the basalticand trachytic lavas with respect to both bulk rock major andtrace element geochemistry and mineral chemistry, and quantitativepetrogenetic modelling suggests that most of the variation canbe attributed to crystal fractionation/accumulation processesacting on a number of geochemically distinct parental magmas.The Upper Basalts and Lower Basalts have (within the limitsof sampling) a relatively restricted composition compared tothe Middle Basalt series lavas, with the latter ranging frompicrite basalt through to trachyandesite. The picrite basaltsand coarsely pyroxene-olivine phyric basalts represent partialcumulates with varying proportions (up to 40 wt. per cent) ofaccumulated olivine and clinopyroxene. In contrast, the moderatelyphyric and aphyric/finely porphyritic lavas represent the productsof crystal fractionation with the most evolved lavas havingexperienced at least 40 per cent fractional crystallizationof clinopyroxene, olivine, plagioclase and minor Fe-Ti oxidesand apatite. The detailed abundance variations in these lavasindicate that a number of parental magma compositions have fractionatedto produce the overall variations in basalt geochemistry, andsome of the magmas have interacted through mixing processes. The trachytic lavas show a large range in trace element abundance,but have only a limited major element variation. Most of thisvariation can be attributed to extensive (up to 70 per cent)fractional crystallization of predominantly alkali feldsparwith minor clinopyroxene, olivine, biotite, titano-magnetiteand apatite. A number of genetically distinct trachytes canbe recognized which are probably not related to each other byany simple fractional crystallization process. The compositionof the least evolved trachytes can be adequately accounted forby relatively extensive (up to 60 per cent) fractionation ofthe more evolved Middle Basalt series lavas. The trace element and isotopic characteristics of primitiveGough Island basalts support the concept that the source region(s)giving rise to these lavas is extremely enriched in highly incompatibleelements relative to primordial or ‘undepleted’mantle of bulk earth composition. It is unlikely that the lavashave sampled undepleted mantle as might be suggested by thesimilarity of the Sr and Nd isotopic ratios to ‘bulk earth’values. Rather, a model is favoured whereby the lavas are derivedfrom previously enriched sub-oceanic mantle which was subsequentlyinvaded and further enriched, at some time prior to partialmelting, by melts or fluids highly enriched in incompatibleelements. The enrichment could have occurred as veining by smalldegree partial melts or by infiltration of metasomatic fluids.  相似文献   

19.
Primary basalts and magma genesis   总被引:1,自引:0,他引:1  
Three Eocene lavas from Skye, NW Scotland, have been subjected to anhydrous experimental studies within their melting ranges at pressures up to 30 kb. Two of these, an olivine-phyric magnesian alkali basalt and a near-aphyric Mg-poor transitional basalt, appear to show four-phase points on their liquidi at high pressures which are thought to have genetic significance. From experimental and mineralogical evidence, the magnesian basalt is postulated to be a primary magma, erupted without significant compositional change from its genesis by slight partial melting of a relatively Fe-rich spinel lherzolite upper mantle at about 60 km depth. The liquid seems to have had a reaction relationship with Ca-poor pyroxene (pigeonite) in the residual lherzolite. Partial crystallization of batches of this magma, delayed during its ascent at depths of about 40 km, is thought to have given rise to the Mg-poor basaltic liquids. The third lava studied experimentally, a sparsely olivine-phyric hawaiite, does not have olivine on the liquidus in any part of its anhydrous P-T diagram and therefore cannot have been derived under anhydrous conditions from olivine-saturated sources. The mineralogy and chemistry of the lavas are used to support an hypothesis that the hawaiites are products of partial crystallization of pockets of basalt magma at depths approximating to the crust/ mantle boundary beneath Skye, with rising to sufficient values to make the residual liquids comparatively rich in normative feldspar. Finally, the genesis of all other Skye Eocene lavas is reviewed in the light of the new experimental data.  相似文献   

20.
Hana Ridge, the longest submarine rift zone in the Hawaiianisland chain, extending from Maui 140 km to the ESE, has a complexmorphology compared with other Hawaiian rift zones. A totalof 108 rock specimens have been collected from the submarineHana Ridge by six submersible dives. All of the rocks (76 bulkrocks analyzed) are tholeiitic basalts or picrites. Their majorelement compositions, together with distinctively low Zr/Nb,Sr/Nb, and Ba/Nb, overlap those of Kilauea lavas. In contrast,the lavas forming the subaerial Honomanu shield are intermediatein composition between those of Kilauea and Mauna Loa. The compositionalcharacteristics of the lavas imply that clinopyroxene and garnetwere important residual phases during partial melting. The compositionsof olivine and glass (formerly melt) inclusions imply that regardlessof textural type (euhedral, subhedral–undeformed, deformed)olivine crystallized from host magmas. Using the most forsteriticolivine (Fo90·6) and partition coefficients  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号